

Trio: a friendly Python library for async concurrency and I/O

The Trio project’s goal is to produce a production-quality,
permissively licensed [https://github.com/python-trio/trio/blob/master/LICENSE],
async/await-native I/O library for Python. Like all async libraries,
its main purpose is to help you write programs that do multiple
things at the same time with parallelized I/O. A web spider that
wants to fetch lots of pages in parallel, a web server that needs to
juggle lots of downloads and websocket connections at the same time, a
process supervisor monitoring multiple subprocesses… that sort of
thing. Compared to other libraries, Trio attempts to distinguish
itself with an obsessive focus on usability and
correctness. Concurrency is complicated; we try to make it easy
to get things right.

Trio was built from the ground up to take advantage of the latest
Python features [https://www.python.org/dev/peps/pep-0492/], and
draws inspiration from many sources [https://github.com/python-trio/trio/wiki/Reading-list], in
particular Dave Beazley’s Curio [https://curio.readthedocs.io/].
The resulting design is radically simpler than older competitors like
asyncio [https://docs.python.org/3/library/asyncio.html] and
Twisted [https://twistedmatrix.com/], yet just as capable. Trio is
the Python I/O library I always wanted; I find it makes building
I/O-oriented programs easier, less error-prone, and just plain more
fun. Perhaps you’ll find the same.

This project is young and still somewhat experimental: the overall
design is solid and the existing features are fully tested and
documented, but you may encounter missing functionality or rough
edges. We do encourage you do use it, but you should read and
subscribe to issue #1 [https://github.com/python-trio/trio/issues/1] to get warning and a
chance to give feedback about any compatibility-breaking changes.

Vital statistics:

	Supported environments: We test on

	Python: 3.8+ (CPython and PyPy)

	Windows, macOS, Linux (glibc and musl), FreeBSD

Other environments might also work; give it a try and see.

	Install: python3 -m pip install -U trio (or on Windows, maybe
py -3 -m pip install -U trio). No compiler needed.

	Tutorial and reference manual: https://trio.readthedocs.io

	Bug tracker and source code: https://github.com/python-trio/trio

	Real-time chat: https://gitter.im/python-trio/general

	Discussion forum: https://trio.discourse.group

	License: MIT or Apache 2, your choice

	Contributor guide: https://trio.readthedocs.io/en/latest/contributing.html

	Code of conduct: Contributors are requested to follow our code of
conduct [https://trio.readthedocs.io/en/latest/code-of-conduct.html]
in all project spaces.

Trio's friendly, yet comprehensive, manual:

	Tutorial
	Before you begin

	If you get lost or confused…

	Async functions

	A kinder, gentler GIL

	Networking with Trio

	When things go wrong: timeouts, cancellation and exceptions in concurrent tasks

	Awesome Trio Libraries
	Getting Started

	Web and HTML

	Database

	IOT

	Building Command Line Apps

	Building GUI Apps

	Multi-Core/Multiprocessing

	Stream Processing

	RPC

	Testing

	Tools and Utilities

	Trio/Asyncio Interoperability

	Trio’s core functionality
	Entering Trio

	General principles

	Time and clocks

	Cancellation and timeouts

	Tasks let you do multiple things at once

	Task-local storage

	Synchronizing and communicating between tasks

	Notes on async generators

	Threads (if you must)

	Exceptions and warnings

	I/O in Trio
	The abstract Stream API

	Low-level networking with trio.socket

	Asynchronous filesystem I/O

	Spawning subprocesses

	Signals

	Testing made easier with trio.testing
	Test harness integration

	Time and timeouts

	Inter-task ordering

	Streams

	Virtual networking for testing

	Testing checkpoints

	Introspecting and extending Trio with trio.lowlevel
	Debugging and instrumentation

	Low-level process spawning

	Low-level I/O primitives

	Global state: system tasks and run-local variables

	Trio tokens

	Spawning threads

	Safer KeyboardInterrupt handling

	Sleeping and waking

	Task API

	Using “guest mode” to run Trio on top of other event loops

	Handing off live coroutine objects between coroutine runners

	Design and internals
	High-level design principles

	User-level API principles

	Specific style guidelines

	A brief tour of Trio’s internals

	Release history
	Trio 0.23.0 (2023-11-03)

	Trio 0.22.2 (2023-07-13)

	Trio 0.22.1 (2023-07-02)

	Trio 0.22.0 (2022-09-28)

	Trio 0.21.0 (2022-06-07)

	Trio 0.20.0 (2022-02-21)

	Trio 0.19.0 (2021-06-15)

	Trio 0.18.0 (2021-01-11)

	Trio 0.17.0 (2020-09-15)

	Trio 0.16.0 (2020-06-10)

	Trio 0.15.1 (2020-05-22)

	Trio 0.15.0 (2020-05-19)

	Trio 0.14.0 (2020-04-27)

	Trio 0.13.0 (2019-11-02)

	Trio 0.12.1 (2019-08-01)

	Trio 0.12.0 (2019-07-31)

	Trio 0.11.0 (2019-02-09)

	Trio 0.10.0 (2019-01-07)

	Trio 0.9.0 (2018-10-12)

	Trio 0.8.0 (2018-10-01)

	Trio 0.7.0 (2018-09-03)

	Trio 0.6.0 (2018-08-13)

	Trio 0.5.0 (2018-07-20)

	Trio 0.4.0 (2018-04-10)

	Trio 0.3.0 (2017-12-28)

	Trio 0.2.0 (2017-12-06)

	Trio 0.1.0 (2017-03-10)

	Contributing to Trio and related projects
	Getting started

	Providing support

	Preparing pull requests

	Joining the team

	Managing issues

	Governance

	Preparing a release

	Code of Conduct
	When Something Happens

	Our Pledge

	Our Standards

	Scope

	Maintainer Enforcement Process

	Enforcement Examples

	Attribution

Indices and tables

	Index

	Module Index

	Search Page

	Glossary

Tutorial

Welcome to the Trio tutorial! Trio is a modern Python library for
writing asynchronous applications – that is, programs that want to do
multiple things at the same time with parallelized I/O, like a web
spider that fetches lots of pages in parallel, a web server juggling
lots of simultaneous downloads… that sort of thing. Here we’ll try
to give a gentle introduction to asynchronous programming with Trio.

We assume that you’re familiar with Python in general, but don’t worry
– we don’t assume you know anything about asynchronous programming or
Python’s new async/await feature.

Also, unlike many async/await tutorials, we assume that your goal
is to use Trio to write interesting programs, so we won’t go into
the nitty-gritty details of how async/await is implemented inside
the Python interpreter. The word “coroutine” is never mentioned. The
fact is, you really don’t need to know any of that stuff unless you
want to implement a library like Trio, so we leave it out (though
we’ll throw in a few links for those who want to dig deeper).

Okay, ready? Let’s get started.

Before you begin

	Make sure you’re using Python 3.8 or newer.

	python3 -m pip install --upgrade trio (or on Windows, maybe
py -3 -m pip install --upgrade trio – details [https://packaging.python.org/installing/])

	Can you import trio? If so then you’re good to go!

If you get lost or confused…

…then we want to know! We have a friendly chat channel [https://gitter.im/python-trio/general], you can ask questions
using the “python-trio” tag on StackOverflow [https://stackoverflow.com/questions/ask?tags=python+python-trio], or just
file a bug [https://github.com/python-trio/trio/issues/new] (if
our documentation is confusing, that’s our fault, and we want to fix
it!).

Async functions

Python 3.5 added a major new feature: async functions. Using Trio is
all about writing async functions, so let’s start there.

An async function is defined like a normal function, except you write
async def instead of def:

A regular function
def regular_double(x):
 return 2 * x

An async function
async def async_double(x):
 return 2 * x

“Async” is short for “asynchronous”; we’ll sometimes refer to regular
functions like regular_double as “synchronous functions”, to
distinguish them from async functions.

From a user’s point of view, there are two differences between an
async function and a regular function:

	To call an async function, you have to use the await
keyword. So instead of writing regular_double(3), you write
await async_double(3).

	You can’t use the await keyword inside the body of a regular
function. If you try it, you’ll get a syntax error:

def print_double(x):
 print(await async_double(x)) # <-- SyntaxError here

But inside an async function, await is allowed:

async def print_double(x):
 print(await async_double(x)) # <-- OK!

Now, let’s think about the consequences here: if you need await to
call an async function, and only async functions can use
await… here’s a little table:

	If a function like this

	wants to call a function like this

	is it gonna happen?

	sync

	sync

	✓

	sync

	async

	NOPE

	async

	sync

	✓

	async

	async

	✓

So in summary: As a user, the entire advantage of async functions over
regular functions is that async functions have a superpower: they can
call other async functions.

This immediately raises two questions: how, and why? Specifically:

When your Python program starts up, it’s running regular old sync
code. So there’s a chicken-and-the-egg problem: once we’re running an
async function we can call other async functions, but how do we call
that first async function?

And, if the only reason to write an async function is that it can call
other async functions, why on earth would we ever use them in
the first place? I mean, as superpowers go this seems a bit
pointless. Wouldn’t it be simpler to just… not use any async
functions at all?

This is where an async library like Trio comes in. It provides two
things:

	A runner function, which is a special synchronous function that
takes and calls an asynchronous function. In Trio, this is
trio.run:

import trio

async def async_double(x):
 return 2 * x

trio.run(async_double, 3) # returns 6

So that answers the “how” part.

	A bunch of useful async functions – in particular, functions for
doing I/O. So that answers the “why”: these functions are async,
and they’re useful, so if you want to use them, you have to write
async code. If you think keeping track of these async and
await things is annoying, then too bad – you’ve got no choice
in the matter! (Well, OK, you could just not use Trio. That’s a
legitimate option. But it turns out that the async/await stuff
is actually a good thing, for reasons we’ll discuss a little bit
later.)

Here’s an example function that uses
trio.sleep(). (trio.sleep() is like time.sleep() [https://docs.python.org/3/library/time.html#time.sleep],
but with more async.)

import trio

async def double_sleep(x):
 await trio.sleep(2 * x)

trio.run(double_sleep, 3) # does nothing for 6 seconds then returns

So it turns out our async_double function is actually a bad
example. I mean, it works, it’s fine, there’s nothing wrong with it,
but it’s pointless: it could just as easily be written as a regular
function, and it would be more useful that way. double_sleep is a
much more typical example: we have to make it async, because it calls
another async function. The end result is a kind of async sandwich,
with Trio on both sides and our code in the middle:

trio.run -> double_sleep -> trio.sleep

This “sandwich” structure is typical for async code; in general, it
looks like:

trio.run -> [async function] -> ... -> [async function] -> trio.whatever

It’s exactly the functions on the path between trio.run() and
trio.whatever that have to be async. Trio provides the async
bread, and then your code makes up the async sandwich’s tasty async
filling. Other functions (e.g., helpers you call along the way) should
generally be regular, non-async functions.

Warning: don’t forget that await!

Now would be a good time to open up a Python prompt and experiment a
little with writing simple async functions and running them with
trio.run.

At some point in this process, you’ll probably write some code like
this, that tries to call an async function but leaves out the
await:

import time
import trio

async def broken_double_sleep(x):
 print("*yawn* Going to sleep")
 start_time = time.perf_counter()

 # Whoops, we forgot the 'await'!
 trio.sleep(2 * x)

 sleep_time = time.perf_counter() - start_time
 print(f"Woke up after {sleep_time:.2f} seconds, feeling well rested!")

trio.run(broken_double_sleep, 3)

You might think that Python would raise an error here, like it does
for other kinds of mistakes we sometimes make when calling a
function. Like, if we forgot to pass trio.sleep() its required
argument, then we would get a nice TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] saying so. But
unfortunately, if you forget an await, you don’t get that. What
you actually get is:

>>> trio.run(broken_double_sleep, 3)
yawn Going to sleep
Woke up after 0.00 seconds, feeling well rested!
__main__:4: RuntimeWarning: coroutine 'sleep' was never awaited
>>>

This is clearly broken – 0.00 seconds is not long enough to feel well
rested! Yet the code acts like it succeeded – no exception was
raised. The only clue that something went wrong is that it prints
RuntimeWarning: coroutine 'sleep' was never awaited. Also, the
exact place where the warning is printed might vary, because it
depends on the whims of the garbage collector. If you’re using PyPy,
you might not even get a warning at all until the next GC collection
runs:

On PyPy:
>>>> trio.run(broken_double_sleep, 3)
yawn Going to sleep
Woke up after 0.00 seconds, feeling well rested!
>>>> # what the ... ?? not even a warning!

>>>> # but forcing a garbage collection gives us a warning:
>>>> import gc
>>>> gc.collect()
/home/njs/pypy-3.8-nightly/lib-python/3/importlib/_bootstrap.py:191: RuntimeWarning: coroutine 'sleep' was never awaited
if _module_locks.get(name) is wr: # XXX PyPy fix?
0
>>>>

(If you can’t see the warning above, try scrolling right.)

Forgetting an await like this is an incredibly common
mistake. You will mess this up. Everyone does. And Python will not
help you as much as you’d hope 😞. The key thing to remember is: if
you see the magic words RuntimeWarning: coroutine '...' was never
awaited, then this always means that you made the mistake of
leaving out an await somewhere, and you should ignore all the
other error messages you see and go fix that first, because there’s a
good chance the other stuff is just collateral damage. I’m not even
sure what all that other junk in the PyPy output is. Fortunately I
don’t need to know, I just need to fix my function!

(“I thought you said you weren’t going to mention coroutines!” Yes,
well, I didn’t mention coroutines, Python did. Take it up with
Guido! But seriously, this is unfortunately a place where the internal
implementation details do leak out a bit.)

Why does this happen? In Trio, every time we use await it’s to
call an async function, and every time we call an async function we
use await. But Python’s trying to keep its options open for other
libraries that are ahem a little less organized about things. So
while for our purposes we can think of await trio.sleep(...) as a
single piece of syntax, Python thinks of it as two things: first a
function call that returns this weird “coroutine” object:

>>> trio.sleep(3)
<coroutine object sleep at 0x7f5ac77be6d0>

and then that object gets passed to await, which actually runs the
function. So if you forget await, then two bad things happen: your
function doesn’t actually get called, and you get a “coroutine” object
where you might have been expecting something else, like a number:

>>> async_double(3) + 1
TypeError: unsupported operand type(s) for +: 'coroutine' and 'int'

If you didn’t already mess this up naturally, then give it a try on
purpose: try writing some code with a missing await, or an extra
await, and see what you get. This way you’ll be prepared for when
it happens to you for real.

And remember: watch out for RuntimeWarning: coroutine '...' was
never awaited; it means you need to find and fix your missing
await.

Okay, let’s see something cool already

So now we’ve started using Trio, but so far all we’ve learned to do is
write functions that print things and sleep for various lengths of
time. Interesting enough, but we could just as easily have done that
with time.sleep() [https://docs.python.org/3/library/time.html#time.sleep]. async/await is useless!

Well, not really. Trio has one more trick up its sleeve, that makes
async functions more powerful than regular functions: it can run
multiple async functions at the same time. Here’s an example:

 1# tasks-intro.py
 2
 3import trio
 4
 5
 6async def child1():
 7 print(" child1: started! sleeping now...")
 8 await trio.sleep(1)
 9 print(" child1: exiting!")
10
11
12async def child2():
13 print(" child2: started! sleeping now...")
14 await trio.sleep(1)
15 print(" child2: exiting!")
16
17
18async def parent():
19 print("parent: started!")
20 async with trio.open_nursery() as nursery:
21 print("parent: spawning child1...")
22 nursery.start_soon(child1)
23
24 print("parent: spawning child2...")
25 nursery.start_soon(child2)
26
27 print("parent: waiting for children to finish...")
28 # -- we exit the nursery block here --
29 print("parent: all done!")
30
31
32trio.run(parent)

There’s a lot going on in here, so we’ll take it one step at a
time. In the first part, we define two async functions child1 and
child2. These should look familiar from the last section:

 6async def child1():
 7 print(" child1: started! sleeping now...")
 8 await trio.sleep(1)
 9 print(" child1: exiting!")
10
11
12async def child2():
13 print(" child2: started! sleeping now...")
14 await trio.sleep(1)
15 print(" child2: exiting!")

Next, we define parent as an async function that’s going to call
child1 and child2 concurrently:

18async def parent():
19 print("parent: started!")
20 async with trio.open_nursery() as nursery:
21 print("parent: spawning child1...")
22 nursery.start_soon(child1)
23
24 print("parent: spawning child2...")
25 nursery.start_soon(child2)
26
27 print("parent: waiting for children to finish...")
28 # -- we exit the nursery block here --
29 print("parent: all done!")

It does this by using a mysterious async with statement to create
a “nursery”, and then “spawns” child1 and child2 into the
nursery.

Let’s start with this async with thing. It’s actually pretty
simple. In regular Python, a statement like with someobj: ...
instructs the interpreter to call someobj.__enter__() at the
beginning of the block, and to call someobj.__exit__() at the end
of the block. We call someobj a “context manager”. An async
with does exactly the same thing, except that where a regular
with statement calls regular methods, an async with statement
calls async methods: at the start of the block it does await
someobj.__aenter__() and at that end of the block it does await
someobj.__aexit__(). In this case we call someobj an “async
context manager”. So in short: with blocks are a shorthand for
calling some functions, and since with async/await Python now has two
kinds of functions, it also needs two kinds of with blocks. That’s
all there is to it! If you understand async functions, then you
understand async with.

Note

This example doesn’t use them, but while we’re here we might as
well mention the one other piece of new syntax that async/await
added: async for. It’s basically the same idea as async
with versus with: An async for loop is just like a
for loop, except that where a for loop does
iterator.__next__() to fetch the next item, an async for
does await async_iterator.__anext__(). Now you understand all
of async/await. Basically just remember that it involves making
sandwiches and sticking the word “async” in front of everything,
and you’ll do fine.

Now that we understand async with, let’s look at parent again:

18async def parent():
19 print("parent: started!")
20 async with trio.open_nursery() as nursery:
21 print("parent: spawning child1...")
22 nursery.start_soon(child1)
23
24 print("parent: spawning child2...")
25 nursery.start_soon(child2)
26
27 print("parent: waiting for children to finish...")
28 # -- we exit the nursery block here --
29 print("parent: all done!")

There are only 4 lines of code that really do anything here. On line
20, we use trio.open_nursery() to get a “nursery” object, and
then inside the async with block we call nursery.start_soon twice,
on lines 22 and 25. There are actually two ways to call an async
function: the first one is the one we already saw, using await
async_fn(); the new one is nursery.start_soon(async_fn): it asks Trio
to start running this async function, but then returns immediately
without waiting for the function to finish. So after our two calls to
nursery.start_soon, child1 and child2 are now running in the
background. And then at line 28, the commented line, we hit the end of
the async with block, and the nursery’s __aexit__ function
runs. What this does is force parent to stop here and wait for all
the children in the nursery to exit. This is why you have to use
async with to get a nursery: it gives us a way to make sure that
the child calls can’t run away and get lost. One reason this is
important is that if there’s a bug or other problem in one of the
children, and it raises an exception, then it lets us propagate that
exception into the parent; in many other frameworks, exceptions like
this are just discarded. Trio never discards exceptions.

Ok! Let’s try running it and see what we get:

parent: started!
parent: spawning child1...
parent: spawning child2...
parent: waiting for children to finish...
 child2: started! sleeping now...
 child1: started! sleeping now...
 [... 1 second passes ...]
 child1: exiting!
 child2: exiting!
parent: all done!

(Your output might have the order of the “started” and/or “exiting”
lines swapped compared to mine.)

Notice that child1 and child2 both start together and then
both exit together. And, even though we made two calls to
trio.sleep(1), the program finished in just one second total.
So it looks like child1 and child2 really are running at the
same time!

Now, if you’re familiar with programming using threads, this might
look familiar – and that’s intentional. But it’s important to realize
that there are no threads here. All of this is happening in a single
thread. To remind ourselves of this, we use slightly different
terminology: instead of spawning two “threads”, we say that we spawned
two “tasks”. There are two differences between tasks and threads: (1)
many tasks can take turns running on a single thread, and (2) with
threads, the Python interpreter/operating system can switch which
thread is running whenever they feel like it; with tasks, we can only
switch at certain designated places we call “checkpoints”. In the next section, we’ll dig into what this means.

Task switching illustrated

The big idea behind async/await-based libraries like Trio is to run
lots of tasks simultaneously on a single thread by switching between
them at appropriate places – so for example, if we’re implementing a
web server, then one task could be sending an HTTP response at the
same time as another task is waiting for new connections. If all you
want to do is use Trio, then you don’t need to understand all the
nitty-gritty detail of how this switching works – but it’s very useful
to have at least a general intuition about what Trio is doing “under
the hood” when your code is executing. To help build that intuition,
let’s look more closely at how Trio ran our example from the last
section.

Fortunately, Trio provides a rich set of tools for inspecting
and debugging your programs. Here we want to watch
trio.run() at work, which we can do by writing a class we’ll
call Tracer, which implements Trio’s Instrument
interface. Its job is to log various events as they happen:

class Tracer(trio.abc.Instrument):
 def before_run(self):
 print("!!! run started")

 def _print_with_task(self, msg, task):
 # repr(task) is perhaps more useful than task.name in general,
 # but in context of a tutorial the extra noise is unhelpful.
 print(f"{msg}: {task.name}")

 def task_spawned(self, task):
 self._print_with_task("### new task spawned", task)

 def task_scheduled(self, task):
 self._print_with_task("### task scheduled", task)

 def before_task_step(self, task):
 self._print_with_task(">>> about to run one step of task", task)

 def after_task_step(self, task):
 self._print_with_task("<<< task step finished", task)

 def task_exited(self, task):
 self._print_with_task("### task exited", task)

 def before_io_wait(self, timeout):
 if timeout:
 print(f"### waiting for I/O for up to {timeout} seconds")
 else:
 print("### doing a quick check for I/O")
 self._sleep_time = trio.current_time()

 def after_io_wait(self, timeout):
 duration = trio.current_time() - self._sleep_time
 print(f"### finished I/O check (took {duration} seconds)")

 def after_run(self):
 print("!!! run finished")

Then we re-run our example program from the previous section, but this
time we pass trio.run() a Tracer object:

trio.run(parent, instruments=[Tracer()])

This generates a lot of output, so we’ll go through it one step at a
time.

First, there’s a bit of chatter while Trio gets ready to run our
code. Most of this is irrelevant to us for now, but in the middle you
can see that Trio has created a task for the __main__.parent
function, and “scheduled” it (i.e., made a note that it should be run
soon):

$ python3 tutorial/tasks-with-trace.py
!!! run started
new task spawned: <init>
task scheduled: <init>
doing a quick check for I/O
finished I/O check (took 1.1122087016701698e-05 seconds)
>>> about to run one step of task: <init>
new task spawned: <call soon task>
task scheduled: <call soon task>
new task spawned: __main__.parent
task scheduled: __main__.parent
<<< task step finished: <init>
doing a quick check for I/O
finished I/O check (took 6.4980704337358475e-06 seconds)

Once the initial housekeeping is done, Trio starts running the
parent function, and you can see parent creating the two child
tasks. Then it hits the end of the async with block, and pauses:

>>> about to run one step of task: __main__.parent
parent: started!
parent: spawning child1...
new task spawned: __main__.child1
task scheduled: __main__.child1
parent: spawning child2...
new task spawned: __main__.child2
task scheduled: __main__.child2
parent: waiting for children to finish...
<<< task step finished: __main__.parent

Control then goes back to trio.run(), which logs a bit more
internal chatter:

>>> about to run one step of task: <call soon task>
<<< task step finished: <call soon task>
doing a quick check for I/O
finished I/O check (took 5.476875230669975e-06 seconds)

And then gives the two child tasks a chance to run:

>>> about to run one step of task: __main__.child2
 child2 started! sleeping now...
<<< task step finished: __main__.child2

>>> about to run one step of task: __main__.child1
 child1: started! sleeping now...
<<< task step finished: __main__.child1

Each task runs until it hits the call to trio.sleep(), and then
suddenly we’re back in trio.run() deciding what to run next. How
does this happen? The secret is that trio.run() and
trio.sleep() work together to make it happen: trio.sleep()
has access to some special magic that lets it pause itself,
so it sends a note to trio.run() requesting to be
woken again after 1 second, and then suspends the task. And once the
task is suspended, Python gives control back to trio.run(),
which decides what to do next. (If this sounds similar to the way that
generators can suspend execution by doing a yield, then that’s not
a coincidence: inside the Python interpreter, there’s a lot of overlap
between the implementation of generators and async functions.)

Note

You might wonder whether you can mix-and-match primitives from
different async libraries. For example, could we use
trio.run() together with asyncio.sleep() [https://docs.python.org/3/library/asyncio-task.html#asyncio.sleep]? The answer is
no, we can’t, and the paragraph above explains why: the two sides
of our async sandwich have a private language they use to talk to
each other, and different libraries use different languages. So if
you try to call asyncio.sleep() [https://docs.python.org/3/library/asyncio-task.html#asyncio.sleep] from inside a
trio.run(), then Trio will get very confused indeed and
probably blow up in some dramatic way.

Only async functions have access to the special magic for suspending a
task, so only async functions can cause the program to switch to a
different task. What this means is that if a call doesn’t have an await
on it, then you know that it can’t be a place where your task will
be suspended. This makes tasks much easier to reason about [https://glyph.twistedmatrix.com/2014/02/unyielding.html] than
threads, because there are far fewer ways that tasks can be
interleaved with each other and stomp on each others’ state. (For
example, in Trio a statement like a += 1 is always atomic – even
if a is some arbitrarily complicated custom object!) Trio also
makes some further guarantees beyond that, but
that’s the big one.

And now you also know why parent had to use an async with to
open the nursery: if we had used a regular with block, then it
wouldn’t have been able to pause at the end and wait for the children
to finish; we need our cleanup function to be async, which is exactly
what async with gives us.

Now, back to our execution point. To recap: at this point parent
is waiting on child1 and child2, and both children are
sleeping. So trio.run() checks its notes, and sees that there’s
nothing to be done until those sleeps finish – unless possibly some
external I/O event comes in. If that happened, then it might give us
something to do. Of course we aren’t doing any I/O here so it won’t
happen, but in other situations it could. So next it calls an
operating system primitive to put the whole process to sleep:

waiting for I/O for up to 0.9999009938910604 seconds

And in fact no I/O does arrive, so one second later we wake up again,
and Trio checks its notes again. At this point it checks the current
time, compares it to the notes that trio.sleep() sent saying
when the two child tasks should be woken up again, and realizes
that they’ve slept for long enough, so it schedules them to run soon:

finished I/O check (took 1.0006483688484877 seconds)
task scheduled: __main__.child1
task scheduled: __main__.child2

And then the children get to run, and this time they run to
completion. Remember how parent is waiting for them to finish?
Notice how parent gets scheduled when the first child exits:

>>> about to run one step of task: __main__.child1
 child1: exiting!
task scheduled: __main__.parent
task exited: __main__.child1
<<< task step finished: __main__.child1

>>> about to run one step of task: __main__.child2
 child2 exiting!
task exited: __main__.child2
<<< task step finished: __main__.child2

Then, after another check for I/O, parent wakes up. The nursery
cleanup code notices that all its children have exited, and lets the
nursery block finish. And then parent makes a final print and
exits:

doing a quick check for I/O
finished I/O check (took 9.045004844665527e-06 seconds)

>>> about to run one step of task: __main__.parent
parent: all done!
task scheduled: <init>
task exited: __main__.parent
<<< task step finished: __main__.parent

And finally, after a bit more internal bookkeeping, trio.run()
exits too:

doing a quick check for I/O
finished I/O check (took 5.996786057949066e-06 seconds)
>>> about to run one step of task: <init>
task scheduled: <call soon task>
task scheduled: <init>
<<< task step finished: <init>
doing a quick check for I/O
finished I/O check (took 6.258022040128708e-06 seconds)
>>> about to run one step of task: <call soon task>
task exited: <call soon task>
<<< task step finished: <call soon task>
>>> about to run one step of task: <init>
task exited: <init>
<<< task step finished: <init>
!!! run finished

You made it!

That was a lot of text, but again, you don’t need to understand
everything here to use Trio – in fact, Trio goes to great lengths to
make each task feel like it executes in a simple, linear way. (Just
like your operating system goes to great lengths to make it feel like
your single-threaded code executes in a simple linear way, even though
under the covers the operating system juggles between different
threads and processes in essentially the same way Trio does.) But it
is useful to have a rough model in your head of how the code you write
is actually executed, and – most importantly – the consequences of
that for parallelism.

Alternatively, if this has just whetted your appetite and you want to
know more about how async/await works internally, then this blog
post [https://snarky.ca/how-the-heck-does-async-await-work-in-python-3-5/]
is a good deep dive, or check out this great walkthrough [https://github.com/AndreLouisCaron/a-tale-of-event-loops] to see
how to build a simple async I/O framework from the ground up.

A kinder, gentler GIL

Speaking of parallelism – let’s zoom out for a moment and talk about
how async/await compares to other ways of handling concurrency in
Python.

As we’ve already noted, Trio tasks are conceptually rather similar to
Python’s built-in threads, as provided by the threading [https://docs.python.org/3/library/threading.html#module-threading]
module. And in all common Python implementations, threads have a
famous limitation: the Global Interpreter Lock, or “GIL” for
short. The GIL means that even if you use multiple threads, your code
still (mostly) ends up running on a single core. People tend to find
this frustrating.

But from Trio’s point of view, the problem with the GIL isn’t that it
restricts parallelism. Of course it would be nice if Python had better
options for taking advantage of multiple cores, but that’s an
extremely difficult problem to solve, and in the meantime there are
lots of problems where a single core is totally adequate – or where if
it isn’t, then process-level or machine-level parallelism works fine.

No, the problem with the GIL is that it’s a lousy deal: we give up
on using multiple cores, and in exchange we get… almost all the same
challenges and mind-bending bugs that come with real parallel
programming, and – to add insult to injury – pretty poor scalability [https://twitter.com/hynek/status/771790449057132544]. Threads in
Python just aren’t that appealing.

Trio doesn’t make your code run on multiple cores; in fact, as we saw
above, it’s baked into Trio’s design that when it has multiple tasks,
they take turns, so at each moment only one of them is actively running.
We’re not so much overcoming the GIL as embracing it. But if you’re
willing to accept that, plus a bit of extra work to put these new
async and await keywords in the right places, then in exchange
you get:

	Excellent scalability: Trio can run 10,000+ tasks simultaneously
without breaking a sweat, so long as their total CPU demands don’t
exceed what a single core can provide. (This is common in, for
example, network servers that have lots of clients connected, but
only a few active at any given time.)

	Fancy features: most threading systems are implemented in C and
restricted to whatever features the operating system provides. In
Trio our logic is all in Python, which makes it possible to
implement powerful and ergonomic features like Trio’s
cancellation system.

	Code that’s easier to reason about: the await keyword means that
potential task-switching points are explicitly marked within each
function. This can make Trio code dramatically easier to reason
about [https://glyph.twistedmatrix.com/2014/02/unyielding.html]
than the equivalent program using threads.

Certainly it’s not appropriate for every app… but there are a lot of
situations where the trade-offs here look pretty appealing.

There is one downside that’s important to keep in mind, though. Making
checkpoints explicit gives you more control over how your tasks can be
interleaved – but with great power comes great responsibility. With
threads, the runtime environment is responsible for making sure that
each thread gets its fair share of running time. With Trio, if some
task runs off and does stuff for seconds on end without executing a
checkpoint, then… all your other tasks will just have to wait.

Here’s an example of how this can go wrong. Take our example
from above, and replace the calls to
trio.sleep() with calls to time.sleep() [https://docs.python.org/3/library/time.html#time.sleep]. If we run our
modified program, we’ll see something like:

parent: started!
parent: spawning child1...
parent: spawning child2...
parent: waiting for children to finish...
 child2 started! sleeping now...
 [... pauses for 1 second ...]
 child2 exiting!
 child1: started! sleeping now...
 [... pauses for 1 second ...]
 child1: exiting!
parent: all done!

One of the major reasons why Trio has such a rich
instrumentation API is to make it
possible to write debugging tools to catch issues like this.

Networking with Trio

Now let’s take what we’ve learned and use it to do some I/O, which is
where async/await really shines.

The traditional toy application for demonstrating network APIs is an
“echo server”: a program that awaits arbitrary data from remote clients,
and then sends that same data right back. (Probably a more relevant example
these days would be an application that does lots of concurrent HTTP
requests, but for that you need an HTTP library [https://github.com/python-trio/trio/issues/236#issuecomment-310784001]
such as asks [https://asks.readthedocs.io], so we’ll stick
with the echo server tradition.)

In this tutorial, we present both ends of the pipe: the client, and the
server. The client periodically sends data to the server, and displays its
answers. The server awaits connections; when a client connects, it recopies
the received data back on the pipe.

An echo client

To start with, here’s an example echo client, i.e., the program that
will send some data at our echo server and get responses back:

 1# echo-client.py
 2
 3import sys
 4import trio
 5
 6# arbitrary, but:
 7# - must be in between 1024 and 65535
 8# - can't be in use by some other program on your computer
 9# - must match what we set in our echo server
10PORT = 12345
11
12
13async def sender(client_stream):
14 print("sender: started!")
15 while True:
16 data = b"async can sometimes be confusing, but I believe in you!"
17 print(f"sender: sending {data!r}")
18 await client_stream.send_all(data)
19 await trio.sleep(1)
20
21
22async def receiver(client_stream):
23 print("receiver: started!")
24 async for data in client_stream:
25 print(f"receiver: got data {data!r}")
26 print("receiver: connection closed")
27 sys.exit()
28
29
30async def parent():
31 print(f"parent: connecting to 127.0.0.1:{PORT}")
32 client_stream = await trio.open_tcp_stream("127.0.0.1", PORT)
33 async with client_stream:
34 async with trio.open_nursery() as nursery:
35 print("parent: spawning sender...")
36 nursery.start_soon(sender, client_stream)
37
38 print("parent: spawning receiver...")
39 nursery.start_soon(receiver, client_stream)
40
41
42trio.run(parent)

Note that this code will not work without a TCP server such as the one
we’ll implement below.

The overall structure here should be familiar, because it’s just like
our last example: we have a
parent task, which spawns two child tasks to do the actual work, and
then at the end of the async with block it switches into full-time
parenting mode while waiting for them to finish. But now instead of
just calling trio.sleep(), the children use some of Trio’s
networking APIs.

Let’s look at the parent first:

30async def parent():
31 print(f"parent: connecting to 127.0.0.1:{PORT}")
32 client_stream = await trio.open_tcp_stream("127.0.0.1", PORT)
33 async with client_stream:
34 async with trio.open_nursery() as nursery:
35 print("parent: spawning sender...")
36 nursery.start_soon(sender, client_stream)
37
38 print("parent: spawning receiver...")
39 nursery.start_soon(receiver, client_stream)

First we call trio.open_tcp_stream() to make a TCP connection to
the server. 127.0.0.1 is a magic IP address [https://en.wikipedia.org/wiki/IP_address] meaning “the computer
I’m running on”, so this connects us to whatever program on the local
computer is using PORT as its contact point. This function returns
an object implementing Trio’s Stream interface,
which gives us methods to send and receive bytes, and to close the
connection when we’re done. We use an async with block to make
sure that we do close the connection – not a big deal in a toy example
like this, but it’s a good habit to get into, and Trio is designed to
make with and async with blocks easy to use.

Finally, we start up two child tasks, and pass each of them a
reference to the stream. (This is also a good example of how
nursery.start_soon lets you pass positional arguments to the
spawned function.)

Our first task’s job is to send data to the server:

13async def sender(client_stream):
14 print("sender: started!")
15 while True:
16 data = b"async can sometimes be confusing, but I believe in you!"
17 print(f"sender: sending {data!r}")
18 await client_stream.send_all(data)
19 await trio.sleep(1)

It uses a loop that alternates between calling await
client_stream.send_all(...) to send some data (this is the method
you use for sending data on any kind of Trio stream), and then
sleeping for a second to avoid making the output scroll by too fast on
your terminal.

And the second task’s job is to process the data the server sends back:

22async def receiver(client_stream):
23 print("receiver: started!")
24 async for data in client_stream:
25 print(f"receiver: got data {data!r}")
26 print("receiver: connection closed")
27 sys.exit()

It uses an async for loop to fetch data from the server.
Alternatively, it could use receive_some,
which is the opposite of send_all, but using
async for saves some boilerplate.

And now we’re ready to look at the server.

An echo server

As usual, let’s look at the whole thing first, and then we’ll discuss
the pieces:

 1# echo-server.py
 2
 3import trio
 4from itertools import count
 5
 6# Port is arbitrary, but:
 7# - must be in between 1024 and 65535
 8# - can't be in use by some other program on your computer
 9# - must match what we set in our echo client
10PORT = 12345
11
12CONNECTION_COUNTER = count()
13
14
15async def echo_server(server_stream):
16 # Assign each connection a unique number to make our debug prints easier
17 # to understand when there are multiple simultaneous connections.
18 ident = next(CONNECTION_COUNTER)
19 print(f"echo_server {ident}: started")
20 try:
21 async for data in server_stream:
22 print(f"echo_server {ident}: received data {data!r}")
23 await server_stream.send_all(data)
24 print(f"echo_server {ident}: connection closed")
25 # FIXME: add discussion of (Base)ExceptionGroup to the tutorial, and use
26 # exceptiongroup.catch() here. (Not important in this case, but important
27 # if the server code uses nurseries internally.)
28 except Exception as exc:
29 # Unhandled exceptions will propagate into our parent and take
30 # down the whole program. If the exception is KeyboardInterrupt,
31 # that's what we want, but otherwise maybe not...
32 print(f"echo_server {ident}: crashed: {exc!r}")
33
34
35async def main():
36 await trio.serve_tcp(echo_server, PORT)
37
38
39# We could also just write 'trio.run(trio.serve_tcp, echo_server, PORT)', but real
40# programs almost always end up doing other stuff too and then we'd have to go
41# back and factor it out into a separate function anyway. So it's simplest to
42# just make it a standalone function from the beginning.
43trio.run(main)

Let’s start with main, which is just one line long:

35async def main():
36 await trio.serve_tcp(echo_server, PORT)

What this does is call serve_tcp(), which is a convenience
function Trio provides that runs forever (or at least until you hit
control-C or otherwise cancel it). This function does several helpful
things:

	It creates a nursery internally, so that our server will be able to
handle multiple connections at the same time.

	It listens for incoming TCP connections on the specified PORT.

	Whenever a connection arrives, it starts a new task running the
function we pass (in this example it’s echo_server), and passes
it a stream representing that connection.

	When each task exits, it makes sure to close the corresponding
connection. (That’s why you don’t see any async with
server_stream in the server – serve_tcp() takes care of this
for us.)

So serve_tcp() is pretty handy! This part works pretty much the
same for any server, whether it’s an echo server, HTTP server, SSH
server, or whatever, so it makes sense to bundle it all up together in
a helper function like this.

Now let’s look at echo_server, which handles each client
connection – so if there are multiple clients, there might be multiple
calls to echo_server running at the same time. This is where we
implement our server’s “echo” behavior. This should be pretty
straightforward to understand, because it uses the same stream
functions we saw in the last section:

15async def echo_server(server_stream):
16 # Assign each connection a unique number to make our debug prints easier
17 # to understand when there are multiple simultaneous connections.
18 ident = next(CONNECTION_COUNTER)
19 print(f"echo_server {ident}: started")
20 try:
21 async for data in server_stream:
22 print(f"echo_server {ident}: received data {data!r}")
23 await server_stream.send_all(data)
24 print(f"echo_server {ident}: connection closed")
25 # FIXME: add discussion of (Base)ExceptionGroup to the tutorial, and use
26 # exceptiongroup.catch() here. (Not important in this case, but important
27 # if the server code uses nurseries internally.)
28 except Exception as exc:
29 # Unhandled exceptions will propagate into our parent and take
30 # down the whole program. If the exception is KeyboardInterrupt,
31 # that's what we want, but otherwise maybe not...
32 print(f"echo_server {ident}: crashed: {exc!r}")

The argument server_stream is provided by serve_tcp(), and
is the other end of the connection we made in the client: so the data
that the client passes to send_all will come out here. Then we
have a try block discussed below, and finally the server loop
which alternates between reading some data from the socket and then
sending it back out again (unless the socket was closed, in which case
we quit).

So what’s that try block for? Remember that in Trio, like Python
in general, exceptions keep propagating until they’re caught. Here we
think it’s plausible there might be unexpected exceptions, and we want
to isolate that to making just this one task crash, without taking
down the whole program. For example, if the client closes the
connection at the wrong moment then it’s possible this code will end
up calling send_all on a closed connection and get a
BrokenResourceError; that’s unfortunate, and in a more serious
program we might want to handle it more explicitly, but it doesn’t
indicate a problem for any other connections. On the other hand, if
the exception is something like a KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt], we do
want that to propagate out into the parent task and cause the whole
program to exit. To express this, we use a try block with an
except Exception: handler.

In general, Trio leaves it up to you to decide whether and how you
want to handle exceptions, just like Python in general.

Try it out

Open a few terminals, run echo-server.py in one, run
echo-client.py in another, and watch the messages scroll by! When
you get bored, you can exit by hitting control-C.

Some things to try:

	Open several terminals, and run multiple clients at the same time,
all talking to the same server.

	See how the server reacts when you hit control-C on the client.

	See how the client reacts when you hit control-C on the server.

Flow control in our echo client and server

Here’s a question you might be wondering about: why does our client
use two separate tasks for sending and receiving, instead of a single
task that alternates between them – like the server has? For example,
our client could use a single task like:

Can you spot the two problems with this code?
async def send_and_receive(client_stream):
 while True:
 data = ...
 await client_stream.send_all(data)
 received = await client_stream.receive_some()
 if not received:
 sys.exit()
 await trio.sleep(1)

It turns out there are two problems with this – one minor and one
major. Both relate to flow control. The minor problem is that when we
call receive_some here we’re not waiting for all the data to be
available; receive_some returns as soon as any data is available. If
data is small, then our operating systems / network / server will
probably keep it all together in a single chunk, but there’s no
guarantee. If the server sends hello then we might get hello,
or he llo, or h e l l o, or … bottom
line, any time we’re expecting more than one byte of data, we have to
be prepared to call receive_some multiple times.

And where this would go especially wrong is if we find ourselves in
the situation where data is big enough that it passes some
internal threshold, and the operating system or network decide to
always break it up into multiple pieces. Now on each pass through the
loop, we send len(data) bytes, but read less than that. The result
is something like a memory leak: we’ll end up with more and more data
backed up in the network, until eventually something breaks.

Note

If you’re curious how things break, then you can use
receive_some's optional argument to put
a limit on how many bytes you read each time, and see what happens.

We could fix this by keeping track of how much data we’re expecting at
each moment, and then keep calling receive_some until we get it all:

expected = len(data)
while expected > 0:
 received = await client_stream.receive_some(expected)
 if not received:
 sys.exit(1)
 expected -= len(received)

This is a bit cumbersome, but it would solve this problem.

There’s another problem, though, that’s deeper. We’re still
alternating between sending and receiving. Notice that when we send
data, we use await: this means that sending can potentially
block. Why does this happen? Any data that we send goes first into
an operating system buffer, and from there onto the network, and then
another operating system buffer on the receiving computer, before the
receiving program finally calls receive_some to take the data out
of these buffers. If we call send_all with a small amount of data,
then it goes into these buffers and send_all returns immediately.
But if we send enough data fast enough, eventually the buffers fill
up, and send_all will block until the remote side calls
receive_some and frees up some space.

Now let’s think about this from the server’s point of view. Each time
it calls receive_some, it gets some data that it needs to send
back. And until it sends it back, the data that is sitting around takes up
memory. Computers have finite amounts of RAM, so if our server is well
behaved then at some point it needs to stop calling receive_some
until it gets rid of some of the old data by doing its own call to
send_all. So for the server, really the only viable option is to
alternate between receiving and sending.

But we need to remember that it’s not just the client’s call to
send_all that might block: the server’s call to send_all can
also get into a situation where it blocks until the client calls
receive_some. So if the server is waiting for send_all to
finish before it calls receive_some, and our client also waits for
send_all to finish before it calls receive_some,… we have a
problem! The client won’t call receive_some until the server has
called receive_some, and the server won’t call receive_some
until the client has called receive_some. If our client is written
to alternate between sending and receiving, and the chunk of data it’s
trying to send is large enough (e.g. 10 megabytes will probably do it
in most configurations), then the two processes will deadlock [https://en.wikipedia.org/wiki/Deadlock].

Moral: Trio gives you powerful tools to manage sequential and
concurrent execution. In this example we saw that the server needs
send and receive_some to alternate in sequence, while the
client needs them to run concurrently, and both were straightforward
to implement. But when you’re implementing network code like this then
it’s important to think carefully about flow control and buffering,
because it’s up to you to choose the right execution mode!

Other popular async libraries like Twisted [https://twistedmatrix.com/] and asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] tend to paper over
these kinds of issues by throwing in unbounded buffers everywhere.
This can avoid deadlocks, but can introduce its own problems and in
particular can make it difficult to keep memory usage and latency
under control [https://vorpus.org/blog/some-thoughts-on-asynchronous-api-design-in-a-post-asyncawait-world/#three-bugs].
While both approaches have their advantages, Trio takes the position
that it’s better to expose the underlying problem as directly as
possible and provide good tools to confront it head-on.

Note

If you want to try and make the deadlock happen on purpose to see
for yourself, and you’re using Windows, then you might need to
split the send_all call up into two calls that each send half of
the data. This is because Windows has a somewhat unusual way of
handling buffering [https://stackoverflow.com/questions/28785626/what-is-the-size-of-a-socket-send-buffer-in-windows].

When things go wrong: timeouts, cancellation and exceptions in concurrent tasks

TODO: give an example using fail_after()

TODO: explain Cancelled

TODO: explain how cancellation is also used when one child raises an
exception

TODO: maybe a brief discussion of KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] handling?

Awesome Trio Libraries

You have completed the tutorial, and are enthusiastic about building
great new applications and libraries with async functionality.
However, to get much useful work done you will want to use some of
the great libraries that support Trio-flavoured concurrency. This list
is not complete, but gives a starting point. Another great way to find
Trio-compatible libraries is to search on PyPI for the Framework :: Trio
tag -> PyPI Search [https://pypi.org/search/?c=Framework+%3A%3A+Trio]

Getting Started

	cookiecutter-trio [https://github.com/python-trio/cookiecutter-trio] - This is a cookiecutter template for Python projects that use Trio. It makes it easy to start a new project, by providing a bunch of preconfigured boilerplate.

	pytest-trio [https://github.com/python-trio/pytest-trio] - Pytest plugin to test async-enabled Trio functions.

	sphinxcontrib-trio [https://github.com/python-trio/sphinxcontrib-trio] - Make Sphinx better at documenting Python functions and methods. In particular, it makes it easy to document async functions.

Web and HTML

	httpx [https://www.python-httpx.org/] - HTTPX is a fully featured HTTP client for Python 3, which provides sync and async APIs, and support for both HTTP/1.1 and HTTP/2.

	trio-websocket [https://github.com/HyperionGray/trio-websocket] - A WebSocket client and server implementation striving for safety, correctness, and ergonomics.

	quart-trio [https://gitlab.com/pgjones/quart-trio/] - Like Flask, but for Trio. A simple and powerful framework for building async web applications and REST APIs. Tip: this is an ASGI-based framework, so you’ll also need an HTTP server with ASGI support.

	hypercorn [https://gitlab.com/pgjones/hypercorn] - An HTTP server for hosting your ASGI apps. Supports HTTP/1.1, HTTP/2, HTTP/3, and Websockets. Can be run as a standalone server, or embedded in a larger Trio app. Use it with quart-trio, or any other Trio-compatible ASGI framework.

	DeFramed [https://github.com/smurfix/deframed] - DeFramed is a Web non-framework that supports a 99%-server-centric approach to Web coding, including support for the Remi [https://github.com/dddomodossola/remi] GUI library.

	pura [https://github.com/groove-x/pura] - A simple web framework for embedding realtime graphical visualization into Trio apps, enabling inspection and manipulation of program state during development.

	pyscalpel [https://scalpel.readthedocs.io/en/latest/] - A fast and powerful webscraping library.

	muffin [https://github.com/klen/muffin] - Muffin is a fast, simple ASGI web-framework

	asgi-tools [https://github.com/klen/asgi-tools] - Tools to quickly build lightest ASGI apps (also contains a test client with lifespan, websocket support)

	starlette [https://github.com/encode/starlette] - The little ASGI framework that shines.

Database

	triopg [https://github.com/python-trio/triopg] - PostgreSQL client for Trio based on asyncpg.

	trio-mysql [https://github.com/python-trio/trio-mysql] - Pure Python MySQL Client.

	sqlalchemy_aio [https://github.com/RazerM/sqlalchemy_aio] - Add asyncio and Trio support to SQLAlchemy core, derived from alchimia.

	redio [https://github.com/Tronic/redio] - Redis client, pure Python and Trio.

	trio_redis [https://github.com/omnidots/trio_redis] - A Redis client for Trio. Depends on hiredis-py.

	asyncakumuli [https://github.com/M-o-a-T/asyncakumuli] - Client for the Akumuli [https://akumuli.org/] time series database.

	aio-databases [https://github.com/klen/aio-databases] - Async Support for various databases (triopg, trio-mysql)

	peewee-aio [https://github.com/klen/peewee-aio] - Peewee Async ORM with trio support (triopg, trio-mysql).

IOT

	DistMQTT [https://github.com/M-o-a-T/distmqtt] - DistMQTT is an open source MQTT client and broker implementation. It is a fork of hbmqtt with support for anyio and DistKV.

	asyncgpio [https://github.com/python-trio/trio-gpio] - Allows easy access to the GPIO pins on your Raspberry Pi or similar embedded computer.

	asyncowfs [https://github.com/M-o-a-T/asyncowfs] - High-level, object-oriented access to 1wire sensors and actors.

	DistKV [https://github.com/M-o-a-T/distkv] - a persistent, distributed, master-less key/value storage with async notification and some IoT-related plug-ins.

Building Command Line Apps

	trio-click [https://github.com/python-trio/trio-click] - Python composable command line utility, trio-compatible version.

	urwid [https://github.com/urwid/urwid] - Urwid is a console user interface library for Python.

Building GUI Apps

	QTrio [https://qtrio.readthedocs.io/en/stable/] - Integration between Trio and either the PyQt or PySide Qt wrapper libraries. Uses Trio’s guest mode.

Multi-Core/Multiprocessing

	tractor [https://github.com/goodboy/tractor] - An experimental, trionic (aka structured concurrent) “actor model” for distributed multi-core Python.

	Trio run_in_process [https://github.com/ethereum/trio-run-in-process] - Trio based API for running code in a separate process.

	trio-parallel [https://trio-parallel.readthedocs.io/] - CPU parallelism for Trio

Stream Processing

	Slurry [https://github.com/andersea/slurry] - Slurry is a microframework for building reactive, data processing applications with Trio.

RPC

	purepc [https://github.com/python-trio/purerpc] - Native, async Python gRPC client and server implementation using anyio.

Testing

	pytest-trio [https://github.com/python-trio/pytest-trio] - Pytest plugin for trio.

	hypothesis-trio [https://github.com/python-trio/hypothesis-trio] - Hypothesis plugin for trio.

	trustme [https://github.com/python-trio/trustme] - #1 quality TLS certs while you wait, for the discerning tester.

	pytest-aio [https://github.com/klen/pytest-aio] - Pytest plugin with support for trio, curio, asyncio

Tools and Utilities

	trio-typing [https://github.com/python-trio/trio-typing] - Type hints for Trio and related projects.

	trio-util [https://github.com/groove-x/trio-util] - An assortment of utilities for the Trio async/await framework.

	flake8-trio [https://github.com/Zac-HD/flake8-trio] - Highly opinionated linter for various sorts of problems in Trio and/or AnyIO. Can run as a flake8 plugin, or standalone with support for autofixing some errors.

	tricycle [https://github.com/oremanj/tricycle] - This is a library of interesting-but-maybe-not-yet-fully-proven extensions to Trio.

	tenacity [https://github.com/jd/tenacity] - Retrying library for Python with async/await support.

	perf-timer [https://github.com/belm0/perf-timer] - A code timer with Trio async support (see TrioPerfTimer). Collects execution time of a block of code excluding time when the coroutine isn’t scheduled, such as during blocking I/O and sleep. Also offers trio_perf_counter() for low-level timing.

	aiometer [https://github.com/florimondmanca/aiometer] - Execute lots of tasks concurrently while controlling concurrency limits

	triotp [https://linkdd.github.io/triotp] - OTP framework for Python Trio

Trio/Asyncio Interoperability

	anyio [https://github.com/agronholm/anyio] - AnyIO is a asynchronous compatibility API that allows applications and libraries written against it to run unmodified on asyncio, curio and trio.

	sniffio [https://github.com/python-trio/sniffio] - This is a tiny package whose only purpose is to let you detect which async library your code is running under.

	trio-asyncio [https://github.com/python-trio/trio-asyncio] - Trio-Asyncio lets you use many asyncio libraries from your Trio app.

Trio’s core functionality

Entering Trio

If you want to use Trio, then the first thing you have to do is call
trio.run():

	
trio.run(async_fn: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], Awaitable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Awaitable][RetT [https://docs.python.org/3/library/typing.html#typing.TypeVar]]], *args: object [https://docs.python.org/3/library/functions.html#object], clock: Clock | None [https://docs.python.org/3/library/constants.html#None] = None, instruments: Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][Instrument] = (), restrict_keyboard_interrupt_to_checkpoints: bool [https://docs.python.org/3/library/functions.html#bool] = False, strict_exception_groups: bool [https://docs.python.org/3/library/functions.html#bool] = False) → RetT [https://docs.python.org/3/library/typing.html#typing.TypeVar]

	Run a Trio-flavored async function, and return the result.

Calling:

run(async_fn, *args)

is the equivalent of:

await async_fn(*args)

except that run() can (and must) be called from a synchronous
context.

This is Trio’s main entry point. Almost every other function in Trio
requires that you be inside a call to run().

	Parameters:

	
	async_fn – An async function.

	args – Positional arguments to be passed to async_fn. If you need to
pass keyword arguments, then use functools.partial() [https://docs.python.org/3/library/functools.html#functools.partial].

	clock – None to use the default system-specific monotonic clock;
otherwise, an object implementing the trio.abc.Clock
interface, like (for example) a trio.testing.MockClock
instance.

	instruments (list of trio.abc.Instrument objects) – Any
instrumentation you want to apply to this run. This can also be
modified during the run; see Instrument API.

	restrict_keyboard_interrupt_to_checkpoints (bool [https://docs.python.org/3/library/functions.html#bool]) – What happens if the
user hits control-C while run() is running? If this argument
is False (the default), then you get the standard Python behavior: a
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] exception will immediately interrupt
whatever task is running (or if no task is running, then Trio will
wake up a task to be interrupted). Alternatively, if you set this
argument to True, then KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] delivery will be
delayed: it will be only be raised at checkpoints, like a Cancelled exception.

The default behavior is nice because it means that even if you
accidentally write an infinite loop that never executes any
checkpoints, then you can still break out of it using control-C.
The alternative behavior is nice if you’re paranoid about a
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] at just the wrong place leaving your
program in an inconsistent state, because it means that you only
have to worry about KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] at the exact same
places where you already have to worry about Cancelled.

This setting has no effect if your program has registered a custom
SIGINT handler, or if run() is called from anywhere but the
main thread (this is a Python limitation), or if you use
open_signal_receiver() to catch SIGINT.

	strict_exception_groups (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, nurseries will always wrap even a single
raised exception in an exception group. This can be overridden on the level of
individual nurseries. This will eventually become the default behavior.

	Returns:

	Whatever async_fn returns.

	Raises:

	
	TrioInternalError – if an unexpected error is encountered inside Trio’s
 internal machinery. This is a bug and you should let us know [https://github.com/python-trio/trio/issues].

	Anything else – if async_fn raises an exception, then run()
 propagates it.

General principles

Checkpoints

When writing code using Trio, it’s very important to understand the
concept of a checkpoint. Many of Trio’s functions act as checkpoints.

A checkpoint is two things:

	It’s a point where Trio checks for cancellation. For example, if
the code that called your function set a timeout, and that timeout
has expired, then the next time your function executes a checkpoint
Trio will raise a Cancelled exception. See
Cancellation and timeouts below for more details.

	It’s a point where the Trio scheduler checks its scheduling policy
to see if it’s a good time to switch to another task, and
potentially does so. (Currently, this check is very simple: the
scheduler always switches at every checkpoint. But this might
change in the future [https://github.com/python-trio/trio/issues/32].)

When writing Trio code, you need to keep track of where your
checkpoints are. Why? First, because checkpoints require extra
scrutiny: whenever you execute a checkpoint, you need to be prepared
to handle a Cancelled error, or for another task to run and
rearrange some state out from under you [https://glyph.twistedmatrix.com/2014/02/unyielding.html]. And
second, because you also need to make sure that you have enough
checkpoints: if your code doesn’t pass through a checkpoint on a
regular basis, then it will be slow to notice and respond to
cancellation and – much worse – since Trio is a cooperative
multi-tasking system where the only place the scheduler can switch
tasks is at checkpoints, it’ll also prevent the scheduler from fairly
allocating time between different tasks and adversely effect the
response latency of all the other code running in the same
process. (Informally we say that a task that does this is “hogging the
run loop”.)

So when you’re doing code review on a project that uses Trio, one of
the things you’ll want to think about is whether there are enough
checkpoints, and whether each one is handled correctly. Of course this
means you need a way to recognize checkpoints. How do you do that?
The underlying principle is that any operation that blocks has to be a
checkpoint. This makes sense: if an operation blocks, then it might
block for a long time, and you’ll want to be able to cancel it if a
timeout expires; and in any case, while this task is blocked we want
another task to be scheduled to run so our code can make full use of
the CPU.

But if we want to write correct code in practice, then this principle
is a little too sloppy and imprecise to be useful. How do we know
which functions might block? What if a function blocks sometimes, but
not others, depending on the arguments passed / network speed / phase
of the moon? How do we figure out where the checkpoints are when
we’re stressed and sleep deprived but still want to get this code
review right, and would prefer to reserve our mental energy for
thinking about the actual logic instead of worrying about checkpoints?

Don’t worry – Trio’s got your back. Since checkpoints are important
and ubiquitous, we make it as simple as possible to keep track of
them. Here are the rules:

	Regular (synchronous) functions never contain any checkpoints.

	If you call an async function provided by Trio (await
<something in trio>), and it doesn’t raise an exception,
then it always acts as a checkpoint. (If it does raise an
exception, it might act as a checkpoint or might not.)

	This includes async iterators: If you write async for ... in <a
trio object>, then there will be at least one checkpoint in
each iteration of the loop, and it will still checkpoint if the
iterable is empty.

	Partial exception for async context managers:
Both the entry and exit of an async with block are
defined as async functions; but for a
particular type of async context manager, it’s often the
case that only one of them is able to block, which means
only that one will act as a checkpoint. This is documented
on a case-by-case basis.

	Third-party async functions / iterators / context managers can act
as checkpoints; if you see await <something> or one of its
friends, then that might be a checkpoint. So to be safe, you
should prepare for scheduling or cancellation happening there.

The reason we distinguish between Trio functions and other functions
is that we can’t make any guarantees about third party
code. Checkpoint-ness is a transitive property: if function A acts as
a checkpoint, and you write a function that calls function A, then
your function also acts as a checkpoint. If you don’t, then it
isn’t. So there’s nothing stopping someone from writing a function
like:

technically legal, but bad style:
async def why_is_this_async():
 return 7

that never calls any of Trio’s async functions. This is an async
function, but it’s not a checkpoint. But why make a function async if
it never calls any async functions? It’s possible, but it’s a bad
idea. If you have a function that’s not calling any async functions,
then you should make it synchronous. The people who use your function
will thank you, because it makes it obvious that your function is not
a checkpoint, and their code reviews will go faster.

(Remember how in the tutorial we emphasized the importance of the
“async sandwich”, and the way it means that
await ends up being a marker that shows when you’re calling a
function that calls a function that … eventually calls one of Trio’s
built-in async functions? The transitivity of async-ness is a
technical requirement that Python imposes, but since it exactly
matches the transitivity of checkpoint-ness, we’re able to exploit it
to help you keep track of checkpoints. Pretty sneaky, eh?)

A slightly trickier case is a function like:

async def sleep_or_not(should_sleep):
 if should_sleep:
 await trio.sleep(1)
 else:
 pass

Here the function acts as a checkpoint if you call it with
should_sleep set to a true value, but not otherwise. This is why
we emphasize that Trio’s own async functions are unconditional checkpoints:
they always check for cancellation and check for scheduling,
regardless of what arguments they’re passed. If you find an async
function in Trio that doesn’t follow this rule, then it’s a bug and
you should let us know [https://github.com/python-trio/trio/issues].

Inside Trio, we’re very picky about this, because Trio is the
foundation of the whole system so we think it’s worth the extra effort
to make things extra predictable. It’s up to you how picky you want to
be in your code. To give you a more realistic example of what this
kind of issue looks like in real life, consider this function:

async def recv_exactly(sock, nbytes):
 data = bytearray()
 while nbytes > 0:
 # recv() reads up to 'nbytes' bytes each time
 chunk = await sock.recv(nbytes)
 if not chunk:
 raise RuntimeError("socket unexpected closed")
 nbytes -= len(chunk)
 data += chunk
 return data

If called with an nbytes that’s greater than zero, then it will
call sock.recv at least once, and recv is an async Trio
function, and thus an unconditional checkpoint. So in this case,
recv_exactly acts as a checkpoint. But if we do await
recv_exactly(sock, 0), then it will immediately return an empty
buffer without executing a checkpoint. If this were a function in
Trio itself, then this wouldn’t be acceptable, but you may decide you
don’t want to worry about this kind of minor edge case in your own
code.

If you do want to be careful, or if you have some CPU-bound code that
doesn’t have enough checkpoints in it, then it’s useful to know that
await trio.sleep(0) is an idiomatic way to execute a checkpoint
without doing anything else, and that
trio.testing.assert_checkpoints() can be used to test that an
arbitrary block of code contains a checkpoint.

Thread safety

The vast majority of Trio’s API is not thread safe: it can only be
used from inside a call to trio.run(). This manual doesn’t
bother documenting this on individual calls; unless specifically noted
otherwise, you should assume that it isn’t safe to call any Trio
functions from anywhere except the Trio thread. (But see below if you really do need to work with threads.)

Time and clocks

Every call to run() has an associated clock.

By default, Trio uses an unspecified monotonic clock, but this can be
changed by passing a custom clock object to run() (e.g. for
testing).

You should not assume that Trio’s internal clock matches any other
clock you have access to, including the clocks of simultaneous calls
to trio.run() happening in other processes or threads!

The default clock is currently implemented as time.perf_counter() [https://docs.python.org/3/library/time.html#time.perf_counter]
plus a large random offset. The idea here is to catch code that
accidentally uses time.perf_counter() [https://docs.python.org/3/library/time.html#time.perf_counter] early, which should help keep
our options open for changing the clock implementation later [https://github.com/python-trio/trio/issues/33], and (more importantly)
make sure you can be confident that custom clocks like
trio.testing.MockClock will work with third-party libraries
you don’t control.

	
trio.current_time() → float [https://docs.python.org/3/library/functions.html#float]

	Returns the current time according to Trio’s internal clock.

	Returns:

	The current time.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if not inside a call to trio.run().

	
await trio.sleep(seconds: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	Pause execution of the current task for the given number of seconds.

	Parameters:

	seconds (float [https://docs.python.org/3/library/functions.html#float]) – The number of seconds to sleep. May be zero to
insert a checkpoint without actually blocking.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if seconds is negative or NaN.

	
await trio.sleep_until(deadline: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	Pause execution of the current task until the given time.

The difference between sleep() and sleep_until() is that the
former takes a relative time and the latter takes an absolute time
according to Trio’s internal clock (as returned by current_time()).

	Parameters:

	deadline (float [https://docs.python.org/3/library/functions.html#float]) – The time at which we should wake up again. May be in
the past, in which case this function executes a checkpoint but
does not block.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if deadline is NaN.

	
await trio.sleep_forever() → None [https://docs.python.org/3/library/constants.html#None]

	Pause execution of the current task forever (or until cancelled).

Equivalent to calling await sleep(math.inf).

If you’re a mad scientist or otherwise feel the need to take direct
control over the PASSAGE OF TIME ITSELF, then you can implement a
custom Clock class:

	
class trio.abc.Clock

	The interface for custom run loop clocks.

	
abstractmethod current_time() → float [https://docs.python.org/3/library/functions.html#float]

	Return the current time, according to this clock.

This is used to implement functions like trio.current_time() and
trio.move_on_after().

	Returns:

	The current time.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
abstractmethod deadline_to_sleep_time(deadline: float [https://docs.python.org/3/library/functions.html#float]) → float [https://docs.python.org/3/library/functions.html#float]

	Compute the real time until the given deadline.

This is called before we enter a system-specific wait function like
select.select() [https://docs.python.org/3/library/select.html#select.select], to get the timeout to pass.

For a clock using wall-time, this should be something like:

return deadline - self.current_time()

but of course it may be different if you’re implementing some kind of
virtual clock.

	Parameters:

	deadline (float [https://docs.python.org/3/library/functions.html#float]) – The absolute time of the next deadline,
according to this clock.

	Returns:

	The number of real seconds to sleep until the given
deadline. May be math.inf [https://docs.python.org/3/library/math.html#math.inf].

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
abstractmethod start_clock() → None [https://docs.python.org/3/library/constants.html#None]

	Do any setup this clock might need.

Called at the beginning of the run.

Cancellation and timeouts

Trio has a rich, composable system for cancelling work, either
explicitly or when a timeout expires.

A simple timeout example

In the simplest case, you can apply a timeout to a block of code:

with trio.move_on_after(30):
 result = await do_http_get("https://...")
 print("result is", result)
print("with block finished")

We refer to move_on_after() as creating a “cancel scope”, which
contains all the code that runs inside the with block. If the HTTP
request takes more than 30 seconds to run, then it will be cancelled:
we’ll abort the request and we won’t see result is ... printed
on the console; instead we’ll go straight to printing the with block
finished message.

Note

Note that this is a single 30 second timeout for the entire body of
the with statement. This is different from what you might have
seen with other Python libraries, where timeouts often refer to
something more complicated [https://requests.kennethreitz.org/en/master/user/quickstart/#timeouts]. We
think this way is easier to reason about.

How does this work? There’s no magic here: Trio is built using
ordinary Python functionality, so we can’t just abandon the code
inside the with block. Instead, we take advantage of Python’s
standard way of aborting a large and complex piece of code: we raise
an exception.

Here’s the idea: whenever you call a cancellable function like await
trio.sleep(...) or await sock.recv(...) – see Checkpoints
– then the first thing that function does is to check if there’s a
surrounding cancel scope whose timeout has expired, or otherwise been
cancelled. If so, then instead of performing the requested operation,
the function fails immediately with a Cancelled exception. In
this example, this probably happens somewhere deep inside the bowels
of do_http_get. The exception then propagates out like any normal
exception (you could even catch it if you wanted, but that’s generally
a bad idea), until it reaches the with move_on_after(...):. And at
this point, the Cancelled exception has done its job – it’s
successfully unwound the whole cancelled scope – so
move_on_after() catches it, and execution continues as normal
after the with block. And this all works correctly even if you
have nested cancel scopes, because every Cancelled object
carries an invisible marker that makes sure that the cancel scope that
triggered it is the only one that will catch it.

Handling cancellation

Pretty much any code you write using Trio needs to have some strategy
to handle Cancelled exceptions – even if you didn’t set a
timeout, then your caller might (and probably will).

You can catch Cancelled, but you shouldn’t! Or more precisely,
if you do catch it, then you should do some cleanup and then re-raise
it or otherwise let it continue propagating (unless you encounter an
error, in which case it’s OK to let that propagate instead). To help
remind you of this fact, Cancelled inherits from
BaseException [https://docs.python.org/3/library/exceptions.html#BaseException], like KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] and
SystemExit [https://docs.python.org/3/library/exceptions.html#SystemExit] do, so that it won’t be caught by catch-all except
Exception: blocks.

It’s also important in any long-running code to make sure that you
regularly check for cancellation, because otherwise timeouts won’t
work! This happens implicitly every time you call a cancellable
operation; see below for details. If
you have a task that has to do a lot of work without any I/O, then you
can use await sleep(0) to insert an explicit cancel+schedule
point.

Here’s a rule of thumb for designing good Trio-style (“trionic”?)
APIs: if you’re writing a reusable function, then you shouldn’t take a
timeout= parameter, and instead let your caller worry about
it. This has several advantages. First, it leaves the caller’s options
open for deciding how they prefer to handle timeouts – for example,
they might find it easier to work with absolute deadlines instead of
relative timeouts. If they’re the ones calling into the cancellation
machinery, then they get to pick, and you don’t have to worry about
it. Second, and more importantly, this makes it easier for others to
reuse your code. If you write a http_get function, and then I come
along later and write a log_in_to_twitter function that needs to
internally make several http_get calls, I don’t want to have to
figure out how to configure the individual timeouts on each of those
calls – and with Trio’s timeout system, it’s totally unnecessary.

Of course, this rule doesn’t apply to APIs that need to impose
internal timeouts. For example, if you write a start_http_server
function, then you probably should give your caller some way to
configure timeouts on individual requests.

Cancellation semantics

You can freely nest cancellation blocks, and each Cancelled
exception “knows” which block it belongs to. So long as you don’t stop
it, the exception will keep propagating until it reaches the block
that raised it, at which point it will stop automatically.

Here’s an example:

print("starting...")
with trio.move_on_after(5):
 with trio.move_on_after(10):
 await trio.sleep(20)
 print("sleep finished without error")
 print("move_on_after(10) finished without error")
print("move_on_after(5) finished without error")

In this code, the outer scope will expire after 5 seconds, causing the
sleep() call to return early with a Cancelled
exception. Then this exception will propagate through the with
move_on_after(10) line until it’s caught by the with
move_on_after(5) context manager. So this code will print:

starting...
move_on_after(5) finished without error

The end result is that Trio has successfully cancelled exactly the
work that was happening within the scope that was cancelled.

Looking at this, you might wonder how you can tell whether the inner
block timed out – perhaps you want to do something different, like try
a fallback procedure or report a failure to our caller. To make this
easier, move_on_after()´s __enter__ function returns an
object representing this cancel scope, which we can use to check
whether this scope caught a Cancelled exception:

with trio.move_on_after(5) as cancel_scope:
 await trio.sleep(10)
print(cancel_scope.cancelled_caught) # prints "True"

The cancel_scope object also allows you to check or adjust this
scope’s deadline, explicitly trigger a cancellation without waiting
for the deadline, check if the scope has already been cancelled, and
so forth – see CancelScope below for the full details.

Cancellations in Trio are “level triggered”, meaning that once a block
has been cancelled, all cancellable operations in that block will
keep raising Cancelled. This helps avoid some pitfalls around
resource clean-up. For example, imagine that we have a function that
connects to a remote server and sends some messages, and then cleans
up on the way out:

with trio.move_on_after(TIMEOUT):
 conn = make_connection()
 try:
 await conn.send_hello_msg()
 finally:
 await conn.send_goodbye_msg()

Now suppose that the remote server stops responding, so our call to
await conn.send_hello_msg() hangs forever. Fortunately, we were
clever enough to put a timeout around this code, so eventually the
timeout will expire and send_hello_msg will raise
Cancelled. But then, in the finally block, we make another
blocking operation, which will also hang forever! At this point, if we
were using asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] or another library with “edge-triggered”
cancellation, we’d be in trouble: since our timeout already fired, it
wouldn’t fire again, and at this point our application would lock up
forever. But in Trio, this doesn’t happen: the await
conn.send_goodbye_msg() call is still inside the cancelled block, so
it will also raise Cancelled.

Of course, if you really want to make another blocking call in your
cleanup handler, Trio will let you; it’s trying to prevent you from
accidentally shooting yourself in the foot. Intentional foot-shooting
is no problem (or at least – it’s not Trio’s problem). To do this,
create a new scope, and set its shield
attribute to True [https://docs.python.org/3/library/constants.html#True]:

with trio.move_on_after(TIMEOUT):
 conn = make_connection()
 try:
 await conn.send_hello_msg()
 finally:
 with trio.move_on_after(CLEANUP_TIMEOUT) as cleanup_scope:
 cleanup_scope.shield = True
 await conn.send_goodbye_msg()

So long as you’re inside a scope with shield = True set, then
you’ll be protected from outside cancellations. Note though that this
only applies to outside cancellations: if CLEANUP_TIMEOUT
expires then await conn.send_goodbye_msg() will still be
cancelled, and if await conn.send_goodbye_msg() call uses any
timeouts internally, then those will continue to work normally as
well. This is a pretty advanced feature that most people probably
won’t use, but it’s there for the rare cases where you need it.

Cancellation and primitive operations

We’ve talked a lot about what happens when an operation is cancelled,
and how you need to be prepared for this whenever calling a
cancellable operation… but we haven’t gone into the details about
which operations are cancellable, and how exactly they behave when
they’re cancelled.

Here’s the rule: if it’s in the trio namespace, and you use await
to call it, then it’s cancellable (see Checkpoints
above). Cancellable means:

	If you try to call it when inside a cancelled scope, then it will
raise Cancelled.

	If it blocks, and while it’s blocked then one of the scopes around
it becomes cancelled, it will return early and raise
Cancelled.

	Raising Cancelled means that the operation did not
happen. If a Trio socket’s send method raises Cancelled,
then no data was sent. If a Trio socket’s recv method raises
Cancelled then no data was lost – it’s still sitting in the
socket receive buffer waiting for you to call recv again. And so
forth.

There are a few idiosyncratic cases where external constraints make it
impossible to fully implement these semantics. These are always
documented. There is also one systematic exception:

	Async cleanup operations – like __aexit__ methods or async close
methods – are cancellable just like anything else except that if
they are cancelled, they still perform a minimum level of cleanup
before raising Cancelled.

For example, closing a TLS-wrapped socket normally involves sending a
notification to the remote peer, so that they can be cryptographically
assured that you really meant to close the socket, and your connection
wasn’t just broken by a man-in-the-middle attacker. But handling this
robustly is a bit tricky. Remember our example above where the blocking
send_goodbye_msg caused problems? That’s exactly how closing a TLS
socket works: if the remote peer has disappeared, then our code may
never be able to actually send our shutdown notification, and it would
be nice if it didn’t block forever trying. Therefore, the method for
closing a TLS-wrapped socket will try to send that notification –
and if it gets cancelled, then it will give up on sending the message,
but will still close the underlying socket before raising
Cancelled, so at least you don’t leak that resource.

Cancellation API details

move_on_after() and all the other cancellation facilities provided
by Trio are ultimately implemented in terms of CancelScope
objects.

	
class trio.CancelScope(*, deadline: float [https://docs.python.org/3/library/functions.html#float] = inf, shield: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	A cancellation scope: the link between a unit of cancellable
work and Trio’s cancellation system.

A CancelScope becomes associated with some cancellable work
when it is used as a context manager surrounding that work:

cancel_scope = trio.CancelScope()
...
with cancel_scope:
 await long_running_operation()

Inside the with block, a cancellation of cancel_scope (via
a call to its cancel() method or via the expiry of its
deadline) will immediately interrupt the
long_running_operation() by raising Cancelled at its
next checkpoint.

The context manager __enter__ returns the CancelScope
object itself, so you can also write with trio.CancelScope() as
cancel_scope:.

If a cancel scope becomes cancelled before entering its with block,
the Cancelled exception will be raised at the first
checkpoint inside the with block. This allows a
CancelScope to be created in one task and
passed to another, so that the first task can later cancel some work
inside the second.

Cancel scopes are not reusable or reentrant; that is, each cancel
scope can be used for at most one with block. (You’ll get a
RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] if you violate this rule.)

The CancelScope constructor takes initial values for the
cancel scope’s deadline and shield attributes; these
may be freely modified after construction, whether or not the scope
has been entered yet, and changes take immediate effect.

	
deadline

	Read-write, float [https://docs.python.org/3/library/functions.html#float]. An absolute time on the current
run’s clock at which this scope will automatically become
cancelled. You can adjust the deadline by modifying this
attribute, e.g.:

I need a little more time!
cancel_scope.deadline += 30

Note that for efficiency, the core run loop only checks for
expired deadlines every once in a while. This means that in
certain cases there may be a short delay between when the clock
says the deadline should have expired, and when checkpoints
start raising Cancelled. This is a very obscure
corner case that you’re unlikely to notice, but we document it
for completeness. (If this does cause problems for you, of
course, then we want to know! [https://github.com/python-trio/trio/issues])

Defaults to math.inf [https://docs.python.org/3/library/math.html#math.inf], which means “no deadline”, though
this can be overridden by the deadline= argument to
the CancelScope constructor.

	
shield

	Read-write, bool [https://docs.python.org/3/library/functions.html#bool], default False [https://docs.python.org/3/library/constants.html#False]. So long as
this is set to True [https://docs.python.org/3/library/constants.html#True], then the code inside this scope
will not receive Cancelled exceptions from scopes
that are outside this scope. They can still receive
Cancelled exceptions from (1) this scope, or (2)
scopes inside this scope. You can modify this attribute:

with trio.CancelScope() as cancel_scope:
 cancel_scope.shield = True
 # This cannot be interrupted by any means short of
 # killing the process:
 await sleep(10)

 cancel_scope.shield = False
 # Now this can be cancelled normally:
 await sleep(10)

Defaults to False [https://docs.python.org/3/library/constants.html#False], though this can be overridden by the
shield= argument to the CancelScope constructor.

	
cancel()

	Cancels this scope immediately.

This method is idempotent, i.e., if the scope was already
cancelled then this method silently does nothing.

	
cancelled_caught

	Readonly bool [https://docs.python.org/3/library/functions.html#bool]. Records whether this scope caught a
Cancelled exception. This requires two things: (1)
the with block exited with a Cancelled
exception, and (2) this scope is the one that was responsible
for triggering this Cancelled exception.

	
cancel_called

	Readonly bool [https://docs.python.org/3/library/functions.html#bool]. Records whether cancellation has been
requested for this scope, either by an explicit call to
cancel() or by the deadline expiring.

This attribute being True does not necessarily mean that the
code within the scope has been, or will be, affected by the
cancellation. For example, if cancel() was called after
the last checkpoint in the with block, when it’s too late to
deliver a Cancelled exception, then this attribute
will still be True.

This attribute is mostly useful for debugging and introspection.
If you want to know whether or not a chunk of code was actually
cancelled, then cancelled_caught is usually more
appropriate.

Often there is no need to create CancelScope object. Trio
already includes cancel_scope attribute in a
task-related Nursery object. We will cover nurseries later in
the manual.

Trio also provides several convenience functions for the common
situation of just wanting to impose a timeout on some code:

	
with trio.move_on_after(seconds: float [https://docs.python.org/3/library/functions.html#float]) → CancelScope as cancel_scope

	Use as a context manager to create a cancel scope whose deadline is
set to now + seconds.

	Parameters:

	seconds (float [https://docs.python.org/3/library/functions.html#float]) – The timeout.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if timeout is less than zero or NaN.

	
with trio.move_on_at(deadline: float [https://docs.python.org/3/library/functions.html#float]) → CancelScope as cancel_scope

	Use as a context manager to create a cancel scope with the given
absolute deadline.

	Parameters:

	deadline (float [https://docs.python.org/3/library/functions.html#float]) – The deadline.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if deadline is NaN.

	
with trio.fail_after(seconds: float [https://docs.python.org/3/library/functions.html#float]) → AbstractContextManager [https://docs.python.org/3/library/contextlib.html#contextlib.AbstractContextManager][CancelScope] as cancel_scope

	Creates a cancel scope with the given timeout, and raises an error if
it is actually cancelled.

This function and move_on_after() are similar in that both create a
cancel scope with a given timeout, and if the timeout expires then both
will cause Cancelled to be raised within the scope. The difference
is that when the Cancelled exception reaches move_on_after(),
it’s caught and discarded. When it reaches fail_after(), then it’s
caught and TooSlowError is raised in its place.

	Parameters:

	seconds (float [https://docs.python.org/3/library/functions.html#float]) – The timeout.

	Raises:

	
	TooSlowError – if a Cancelled exception is raised in this scope
 and caught by the context manager.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if seconds is less than zero or NaN.

	
with trio.fail_at(deadline: float [https://docs.python.org/3/library/functions.html#float]) → AbstractContextManager [https://docs.python.org/3/library/contextlib.html#contextlib.AbstractContextManager][CancelScope] as cancel_scope

	Creates a cancel scope with the given deadline, and raises an error if it
is actually cancelled.

This function and move_on_at() are similar in that both create a
cancel scope with a given absolute deadline, and if the deadline expires
then both will cause Cancelled to be raised within the scope. The
difference is that when the Cancelled exception reaches
move_on_at(), it’s caught and discarded. When it reaches
fail_at(), then it’s caught and TooSlowError is raised in its
place.

	Parameters:

	deadline (float [https://docs.python.org/3/library/functions.html#float]) – The deadline.

	Raises:

	
	TooSlowError – if a Cancelled exception is raised in this scope
 and caught by the context manager.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if deadline is NaN.

Cheat sheet:

	If you want to impose a timeout on a function, but you don’t care
whether it timed out or not:

with trio.move_on_after(TIMEOUT):
 await do_whatever()
carry on!

	If you want to impose a timeout on a function, and then do some
recovery if it timed out:

with trio.move_on_after(TIMEOUT) as cancel_scope:
 await do_whatever()
if cancel_scope.cancelled_caught:
 # The operation timed out, try something else
 try_to_recover()

	If you want to impose a timeout on a function, and then if it times
out then just give up and raise an error for your caller to deal
with:

with trio.fail_after(TIMEOUT):
 await do_whatever()

It’s also possible to check what the current effective deadline is,
which is sometimes useful:

	
trio.current_effective_deadline() → float [https://docs.python.org/3/library/functions.html#float]

	Returns the current effective deadline for the current task.

This function examines all the cancellation scopes that are currently in
effect (taking into account shielding), and returns the deadline that will
expire first.

One example of where this might be is useful is if your code is trying to
decide whether to begin an expensive operation like an RPC call, but wants
to skip it if it knows that it can’t possibly complete in the available
time. Another example would be if you’re using a protocol like gRPC that
propagates timeout information to the remote peer [http://www.grpc.io/docs/guides/concepts.html#deadlines]; this function
gives a way to fetch that information so you can send it along.

If this is called in a context where a cancellation is currently active
(i.e., a blocking call will immediately raise Cancelled), then
returned deadline is -inf. If it is called in a context where no
scopes have a deadline set, it returns inf.

	Returns:

	the effective deadline, as an absolute time.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

Tasks let you do multiple things at once

One of Trio’s core design principles is: no implicit
concurrency. Every function executes in a straightforward,
top-to-bottom manner, finishing each operation before moving on to the
next – like Guido intended.

But, of course, the entire point of an async library is to let you do
multiple things at once. The one and only way to do that in Trio is
through the task spawning interface. So if you want your program to
walk and chew gum, this is the section for you.

Nurseries and spawning

Most libraries for concurrent programming let you start new child
tasks (or threads, or whatever) willy-nilly, whenever and where-ever
you feel like it. Trio is a bit different: you can’t start a child
task unless you’re prepared to be a responsible parent. The way you
demonstrate your responsibility is by creating a nursery:

async with trio.open_nursery() as nursery:
 ...

And once you have a reference to a nursery object, you can start
children in that nursery:

async def child():
 ...

async def parent():
 async with trio.open_nursery() as nursery:
 # Make two concurrent calls to child()
 nursery.start_soon(child)
 nursery.start_soon(child)

This means that tasks form a tree: when you call run(), then
this creates an initial task, and all your other tasks will be
children, grandchildren, etc. of the initial task.

Essentially, the body of the async with block acts like an initial
task that’s running inside the nursery, and then each call to
nursery.start_soon adds another task that runs in parallel. Two
crucial things to keep in mind:

	If any task inside the nursery finishes with an unhandled exception,
then the nursery immediately cancels all the tasks inside the
nursery.

	Since all of the tasks are running concurrently inside the async
with block, the block does not exit until all tasks have
completed. If you’ve used other concurrency frameworks, then you can
think of it as, the de-indentation at the end of the async with
automatically “joins” (waits for) all of the tasks in the nursery.

	Once all the tasks have finished, then:

	The nursery is marked as “closed”, meaning that no new tasks can
be started inside it.

	Any unhandled exceptions are re-raised inside the parent task. If
there are multiple exceptions, then they’re collected up into a
single BaseExceptionGroup [https://docs.python.org/3/library/exceptions.html#BaseExceptionGroup] or ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup] exception.

Since all tasks are descendents of the initial task, one consequence
of this is that run() can’t finish until all tasks have
finished.

Note

A return statement will not cancel the nursery if it still has tasks running:

async def main():
 async with trio.open_nursery() as nursery:
 nursery.start_soon(trio.sleep, 5)
 return

trio.run(main)

This code will wait 5 seconds (for the child task to finish), and then return.

Child tasks and cancellation

In Trio, child tasks inherit the parent nursery’s cancel scopes. So in
this example, both the child tasks will be cancelled when the timeout
expires:

with trio.move_on_after(TIMEOUT):
 async with trio.open_nursery() as nursery:
 nursery.start_soon(child1)
 nursery.start_soon(child2)

Note that what matters here is the scopes that were active when
open_nursery() was called, not the scopes active when
start_soon is called. So for example, the timeout block below does
nothing at all:

async with trio.open_nursery() as nursery:
 with trio.move_on_after(TIMEOUT): # don't do this!
 nursery.start_soon(child)

Why is this so? Well, start_soon() returns as soon as it has scheduled the new task to start running. The flow of execution in the parent then continues on to exit the with trio.move_on_after(TIMEOUT): block, at which point Trio forgets about the timeout entirely. In order for the timeout to apply to the child task, Trio must be able to tell that its associated cancel scope will stay open for at least as long as the child task is executing. And Trio can only know that for sure if the cancel scope block is outside the nursery block.

You might wonder why Trio can’t just remember “this task should be cancelled in TIMEOUT seconds”, even after the with trio.move_on_after(TIMEOUT): block is gone. The reason has to do with how cancellation is implemented. Recall that cancellation is represented by a Cancelled exception, which eventually needs to be caught by the cancel scope that caused it. (Otherwise, the exception would take down your whole program!) In order to be able to cancel the child tasks, the cancel scope has to be able to “see” the Cancelled exceptions that they raise – and those exceptions come out of the async with open_nursery() block, not out of the call to start_soon().

If you want a timeout to apply to one task but not another, then you need to put the cancel scope in that individual task’s function – child(), in this example.

Errors in multiple child tasks

Normally, in Python, only one thing happens at a time, which means
that only one thing can go wrong at a time. Trio has no such
limitation. Consider code like:

async def broken1():
 d = {}
 return d["missing"]

async def broken2():
 seq = range(10)
 return seq[20]

async def parent():
 async with trio.open_nursery() as nursery:
 nursery.start_soon(broken1)
 nursery.start_soon(broken2)

broken1 raises KeyError. broken2 raises
IndexError. Obviously parent should raise some error, but
what? The answer is that both exceptions are grouped in an ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup].
ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup] and its parent class BaseExceptionGroup [https://docs.python.org/3/library/exceptions.html#BaseExceptionGroup] are used to
encapsulate multiple exceptions being raised at once.

To catch individual exceptions encapsulated in an exception group, the except*
clause was introduced in Python 3.11 (PEP 654 [https://peps.python.org/pep-0654/]). Here’s how it works:

try:
 async with trio.open_nursery() as nursery:
 nursery.start_soon(broken1)
 nursery.start_soon(broken2)
except* KeyError as excgroup:
 for exc in excgroup.exceptions:
 ... # handle each KeyError
except* IndexError as excgroup:
 for exc in excgroup.exceptions:
 ... # handle each IndexError

If you want to reraise exceptions, or raise new ones, you can do so, but be aware that
exceptions raised in except* sections will be raised together in a new exception
group.

But what if you can’t use except* just yet? Well, for that there is the handy
exceptiongroup [https://pypi.org/project/exceptiongroup/] library which lets you approximate this behavior with exception handler
callbacks:

from exceptiongroup import catch

def handle_keyerrors(excgroup):
 for exc in excgroup.exceptions:
 ... # handle each KeyError

def handle_indexerrors(excgroup):
 for exc in excgroup.exceptions:
 ... # handle each IndexError

with catch({
 KeyError: handle_keyerrors,
 IndexError: handle_indexerrors
}):
 async with trio.open_nursery() as nursery:
 nursery.start_soon(broken1)
 nursery.start_soon(broken2)

The semantics for the handler functions are equal to except* blocks, except for
setting local variables. If you need to set local variables, you need to declare them
inside the handler function(s) with the nonlocal keyword:

def handle_keyerrors(excgroup):
 nonlocal myflag
 myflag = True

myflag = False
with catch({KeyError: handle_keyerrors}):
 async with trio.open_nursery() as nursery:
 nursery.start_soon(broken1)

For reasons of backwards compatibility, nurseries raise trio.MultiError and
trio.NonBaseMultiError which inherit from BaseExceptionGroup [https://docs.python.org/3/library/exceptions.html#BaseExceptionGroup] and
ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup], respectively. Users should refrain from attempting to raise or
catch the Trio specific exceptions themselves, and treat them as if they were standard
BaseExceptionGroup [https://docs.python.org/3/library/exceptions.html#BaseExceptionGroup] or ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup] instances instead.

“Strict” versus “loose” ExceptionGroup semantics

Ideally, in some abstract sense we’d want everything that can raise an
ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup] to always raise an ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup] (rather than, say, a single
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]). Otherwise, it would be easy to accidentally write something like except
ValueError: (not except*), which works if a single exception is raised but fails to
catch _anything_ in the case of multiple simultaneous exceptions (even if one of them is
a ValueError). However, this is not how Trio worked in the past: as a concession to
practicality when the except* syntax hadn’t been dreamed up yet, the old
trio.MultiError was raised only when at least two exceptions occurred
simultaneously. Adding a layer of ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup] around every nursery, while
theoretically appealing, would probably break a lot of existing code in practice.

Therefore, we’ve chosen to gate the newer, “stricter” behavior behind a parameter
called strict_exception_groups. This is accepted as a parameter to
open_nursery(), to set the behavior for that nursery, and to trio.run(),
to set the default behavior for any nursery in your program that doesn’t override it.

	With strict_exception_groups=True, the exception(s) coming out of a nursery will
always be wrapped in an ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup], so you’ll know that if you’re handling
single errors correctly, multiple simultaneous errors will work as well.

	With strict_exception_groups=False, a nursery in which only one task has failed
will raise that task’s exception without an additional layer of ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup]
wrapping, so you’ll get maximum compatibility with code that was written to
support older versions of Trio.

To maintain backwards compatibility, the default is strict_exception_groups=False.
The default will eventually change to True in a future version of Trio, once
Python 3.11 and later versions are in wide use.

Spawning tasks without becoming a parent

Sometimes it doesn’t make sense for the task that starts a child to
take on responsibility for watching it. For example, a server task may
want to start a new task for each connection, but it can’t listen for
connections and supervise children at the same time.

The solution here is simple once you see it: there’s no requirement
that a nursery object stay in the task that created it! We can write
code like this:

async def new_connection_listener(handler, nursery):
 while True:
 conn = await get_new_connection()
 nursery.start_soon(handler, conn)

async def server(handler):
 async with trio.open_nursery() as nursery:
 nursery.start_soon(new_connection_listener, handler, nursery)

Notice that server opens a nursery and passes it to
new_connection_listener, and then new_connection_listener is
able to start new tasks as “siblings” of itself. Of course, in this
case, we could just as well have written:

async def server(handler):
 async with trio.open_nursery() as nursery:
 while True:
 conn = await get_new_connection()
 nursery.start_soon(handler, conn)

...but sometimes things aren’t so simple, and this trick comes in
handy.

One thing to remember, though: cancel scopes are inherited from the
nursery, not from the task that calls start_soon. So in this
example, the timeout does not apply to child (or to anything
else):

async def do_spawn(nursery):
 with trio.move_on_after(TIMEOUT): # don't do this, it has no effect
 nursery.start_soon(child)

async with trio.open_nursery() as nursery:
 nursery.start_soon(do_spawn, nursery)

Custom supervisors

The default cleanup logic is often sufficient for simple cases, but
what if you want a more sophisticated supervisor? For example, maybe
you have Erlang envy [http://learnyousomeerlang.com/supervisors]
and want features like automatic restart of crashed tasks. Trio itself
doesn’t provide these kinds of features, but you can build them on
top; Trio’s goal is to enforce basic hygiene and then get out of your
way. (Specifically: Trio won’t let you build a supervisor that exits
and leaves orphaned tasks behind, and if you have an unhandled
exception due to bugs or laziness then Trio will make sure they
propagate.) And then you can wrap your fancy supervisor up in a
library and put it on PyPI, because supervisors are tricky and there’s
no reason everyone should have to write their own.

For example, here’s a function that takes a list of functions, runs
them all concurrently, and returns the result from the one that
finishes first:

async def race(*async_fns):
 if not async_fns:
 raise ValueError("must pass at least one argument")

 winner = None

 async def jockey(async_fn, cancel_scope):
 nonlocal winner
 winner = await async_fn()
 cancel_scope.cancel()

 async with trio.open_nursery() as nursery:
 for async_fn in async_fns:
 nursery.start_soon(jockey, async_fn, nursery.cancel_scope)

 return winner

This works by starting a set of tasks which each try to run their
function. As soon as the first function completes its execution, the task will set the nonlocal variable winner
from the outer scope to the result of the function, and cancel the other tasks using the passed in cancel scope. Once all tasks
have been cancelled (which exits the nursery block), the variable winner will be returned.

Here if one or more of the racing functions raises an unhandled
exception then Trio’s normal handling kicks in: it cancels the others
and then propagates the exception. If you want different behavior, you
can get that by adding a try block to the jockey function to
catch exceptions and handle them however you like.

Task-related API details

The nursery API

	
async with trio.open_nursery(strict_exception_groups: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None) → AbstractAsyncContextManager [https://docs.python.org/3/library/contextlib.html#contextlib.AbstractAsyncContextManager][Nursery] as nursery

	Returns an async context manager which must be used to create a
new Nursery.

It does not block on entry; on exit it blocks until all child tasks
have exited.

	Parameters:

	strict_exception_groups (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, even a single raised exception will be
wrapped in an exception group. This will eventually become the default
behavior. If not specified, uses the value passed to run().

	
class trio.Nursery

	A context which may be used to spawn (or cancel) child tasks.

Not constructed directly, use open_nursery instead.

The nursery will remain open until all child tasks have completed,
or until it is cancelled, at which point it will cancel all its
remaining child tasks and close.

Nurseries ensure the absence of orphaned Tasks, since all running
tasks will belong to an open Nursery.

	
cancel_scope

	Creating a nursery also implicitly creates a cancellation scope,
which is exposed as the cancel_scope attribute. This is
used internally to implement the logic where if an error occurs
then __aexit__ cancels all children, but you can use it for
other things, e.g. if you want to explicitly cancel all children
in response to some external event.

	
await start(async_fn, *args, name=None)

	Creates and initializes a child task.

Like start_soon(), but blocks until the new task has
finished initializing itself, and optionally returns some
information from it.

The async_fn must accept a task_status keyword argument,
and it must make sure that it (or someone) eventually calls
task_status.started().

The conventional way to define async_fn is like:

async def async_fn(arg1, arg2, *, task_status=trio.TASK_STATUS_IGNORED):
 ... # Caller is blocked waiting for this code to run
 task_status.started()
 ... # This async code can be interleaved with the caller

trio.TASK_STATUS_IGNORED is a special global object with
a do-nothing started method. This way your function supports
being called either like await nursery.start(async_fn, arg1,
arg2) or directly like await async_fn(arg1, arg2), and
either way it can call task_status.started()
without worrying about which mode it’s in. Defining your function like
this will make it obvious to readers that it supports being used
in both modes.

Before the child calls task_status.started(),
it’s effectively run underneath the call to start(): if it
raises an exception then that exception is reported by
start(), and does not propagate out of the nursery. If
start() is cancelled, then the child task is also
cancelled.

When the child calls task_status.started(),
it’s moved out from underneath start() and into the given nursery.

If the child task passes a value to task_status.started(value),
then start() returns this value. Otherwise, it returns None.

	
start_soon(async_fn, *args, name=None)

	Creates a child task, scheduling await async_fn(*args).

If you want to run a function and immediately wait for its result,
then you don’t need a nursery; just use await async_fn(*args).
If you want to wait for the task to initialize itself before
continuing, see start(), the other fundamental method for
creating concurrent tasks in Trio.

Note that this is not an async function and you don’t use await
when calling it. It sets up the new task, but then returns
immediately, before the new task has a chance to do anything.
New tasks may start running in any order, and at any checkpoint the
scheduler chooses - at latest when the nursery is waiting to exit.

It’s possible to pass a nursery object into another task, which
allows that task to start new child tasks in the first task’s
nursery.

The child task inherits its parent nursery’s cancel scopes.

	Parameters:

	
	async_fn – An async callable.

	args – Positional arguments for async_fn. If you want
to pass keyword arguments, use
functools.partial() [https://docs.python.org/3/library/functools.html#functools.partial].

	name – The name for this task. Only used for
debugging/introspection
(e.g. repr(task_obj)). If this isn’t a string,
start_soon() will try to make it one. A
common use case is if you’re wrapping a function
before spawning a new task, you might pass the
original function as the name= to make
debugging easier.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If this nursery is no longer open
 (i.e. its async with block has
 exited).

	
property child_tasks: frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset][trio.lowlevel.Task]

	Contains all the child Task
objects which are still running.

	Type:

	(frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset])

	
property parent_task: Task

	The Task that opened this nursery.

	Type:

	(Task)

	
trio.TASK_STATUS_IGNORED: TaskStatus

	See Nursery.start().

	
class trio.TaskStatus(Protocol[StatusT])

	The interface provided by Nursery.start() to the spawned task.

This is provided via the task_status keyword-only parameter.

	
started(value: StatusT_contra [https://docs.python.org/3/library/typing.html#typing.TypeVar] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Tasks call this method to indicate that they have initialized.

See nursery.start() for more information.

Task-local storage

Suppose you’re writing a server that responds to network requests, and
you log some information about each request as you process it. If the
server is busy and there are multiple requests being handled at the
same time, then you might end up with logs like this:

Request handler started
Request handler started
Request handler finished
Request handler finished

In this log, it’s hard to know which lines came from which
request. (Did the request that started first also finish first, or
not?) One way to solve this is to assign each request a unique
identifier, and then include this identifier in each log message:

request 1: Request handler started
request 2: Request handler started
request 2: Request handler finished
request 1: Request handler finished

This way we can see that request 1 was slow: it started before request
2 but finished afterwards. (You can also get much fancier [https://opentracing.io/docs/], but this is enough for an
example.)

Now, here’s the problem: how does the logging code know what the
request identifier is? One approach would be to explicitly pass it
around to every function that might want to emit logs… but that’s
basically every function, because you never know when you might need
to add a log.debug(...) call to some utility function buried deep
in the call stack, and when you’re in the middle of a debugging a
nasty problem that last thing you want is to have to stop first and
refactor everything to pass through the request identifier! Sometimes
this is the right solution, but other times it would be much more
convenient if we could store the identifier in a global variable, so
that the logging function could look it up whenever it needed
it. Except… a global variable can only have one value at a time, so
if we have multiple handlers running at once then this isn’t going to
work. What we need is something that’s like a global variable, but
that can have different values depending on which request handler is
accessing it.

To solve this problem, Python has a module in the standard
library: contextvars [https://docs.python.org/3/library/contextvars.html#module-contextvars].

Here’s a toy example demonstrating how to use contextvars [https://docs.python.org/3/library/contextvars.html#module-contextvars]:

import random
import trio
import contextvars

request_info = contextvars.ContextVar("request_info")

Example logging function that tags each line with the request identifier.
def log(msg):
 # Read from task-local storage:
 request_tag = request_info.get()

 print(f"request {request_tag}: {msg}")

An example "request handler" that does some work itself and also
spawns some helper tasks to do some concurrent work.
async def handle_request(tag):
 # Write to task-local storage:
 request_info.set(tag)

 log("Request handler started")
 await trio.sleep(random.random())
 async with trio.open_nursery() as nursery:
 nursery.start_soon(concurrent_helper, "a")
 nursery.start_soon(concurrent_helper, "b")
 await trio.sleep(random.random())
 log("Request received finished")

async def concurrent_helper(job):
 log(f"Helper task {job} started")
 await trio.sleep(random.random())
 log(f"Helper task {job} finished")

Spawn several "request handlers" simultaneously, to simulate a
busy server handling multiple requests at the same time.
async def main():
 async with trio.open_nursery() as nursery:
 for i in range(3):
 nursery.start_soon(handle_request, i)

trio.run(main)

Example output (yours may differ slightly):

request 1: Request handler started
request 2: Request handler started
request 0: Request handler started
request 2: Helper task a started
request 2: Helper task b started
request 1: Helper task a started
request 1: Helper task b started
request 0: Helper task b started
request 0: Helper task a started
request 2: Helper task b finished
request 2: Helper task a finished
request 2: Request received finished
request 0: Helper task a finished
request 1: Helper task a finished
request 1: Helper task b finished
request 1: Request received finished
request 0: Helper task b finished
request 0: Request received finished

For more information, read the
contextvars docs [https://docs.python.org/3/library/contextvars.html].

Synchronizing and communicating between tasks

Trio provides a standard set of synchronization and inter-task
communication primitives. These objects’ APIs are generally modelled
off of the analogous classes in the standard library, but with some
differences.

Blocking and non-blocking methods

The standard library synchronization primitives have a variety of
mechanisms for specifying timeouts and blocking behavior, and of
signaling whether an operation returned due to success versus a
timeout.

In Trio, we standardize on the following conventions:

	We don’t provide timeout arguments. If you want a timeout, then use
a cancel scope.

	For operations that have a non-blocking variant, the blocking and
non-blocking variants are different methods with names like X
and X_nowait, respectively. (This is similar to
queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue], but unlike most of the classes in
threading [https://docs.python.org/3/library/threading.html#module-threading].) We like this approach because it allows us to
make the blocking version async and the non-blocking version sync.

	When a non-blocking method cannot succeed (the channel is empty, the
lock is already held, etc.), then it raises trio.WouldBlock.
There’s no equivalent to the queue.Empty [https://docs.python.org/3/library/queue.html#queue.Empty] versus
queue.Full [https://docs.python.org/3/library/queue.html#queue.Full] distinction – we just have the one exception that
we use consistently.

Fairness

These classes are all guaranteed to be “fair”, meaning that when it
comes time to choose who will be next to acquire a lock, get an item
from a queue, etc., then it always goes to the task which has been
waiting longest. It’s not entirely clear [https://github.com/python-trio/trio/issues/54] whether this is the
best choice, but for now that’s how it works.

As an example of what this means, here’s a small program in which two
tasks compete for a lock. Notice that the task which releases the lock
always immediately attempts to re-acquire it, before the other task has
a chance to run. (And remember that we’re doing cooperative
multi-tasking here, so it’s actually deterministic that the task
releasing the lock will call acquire() before the other
task wakes up; in Trio releasing a lock is not a checkpoint.) With
an unfair lock, this would result in the same task holding the lock
forever and the other task being starved out. But if you run this,
you’ll see that the two tasks politely take turns:

fairness-demo.py

import trio

async def loopy_child(number, lock):
 while True:
 async with lock:
 print(f"Child {number} has the lock!")
 await trio.sleep(0.5)

async def main():
 async with trio.open_nursery() as nursery:
 lock = trio.Lock()
 nursery.start_soon(loopy_child, 1, lock)
 nursery.start_soon(loopy_child, 2, lock)

trio.run(main)

Broadcasting an event with Event

	
class trio.Event

	A waitable boolean value useful for inter-task synchronization,
inspired by threading.Event [https://docs.python.org/3/library/threading.html#threading.Event].

An event object has an internal boolean flag, representing whether
the event has happened yet. The flag is initially False, and the
wait() method waits until the flag is True. If the flag is
already True, then wait() returns immediately. (If the event has
already happened, there’s nothing to wait for.) The set() method
sets the flag to True, and wakes up any waiters.

This behavior is useful because it helps avoid race conditions and
lost wakeups: it doesn’t matter whether set() gets called just
before or after wait(). If you want a lower-level wakeup
primitive that doesn’t have this protection, consider Condition
or trio.lowlevel.ParkingLot.

Note

Unlike threading.Event [https://docs.python.org/3/library/threading.html#threading.Event], trio.Event has no
clear [https://docs.python.org/3/library/threading.html#threading.Event.clear] method. In Trio, once an Event has happened,
it cannot un-happen. If you need to represent a series of events,
consider creating a new Event object for each one (they’re cheap!),
or other synchronization methods like channels or
trio.lowlevel.ParkingLot.

	
is_set() → bool [https://docs.python.org/3/library/functions.html#bool]

	Return the current value of the internal flag.

	
set() → None [https://docs.python.org/3/library/constants.html#None]

	Set the internal flag value to True, and wake any waiting tasks.

	
statistics() → EventStatistics

	Return an object containing debugging information.

Currently the following fields are defined:

	tasks_waiting: The number of tasks blocked on this event’s
wait() method.

	
await wait() → None [https://docs.python.org/3/library/constants.html#None]

	Block until the internal flag value becomes True.

If it’s already True, then this method returns immediately.

	
class trio.EventStatistics(tasks_waiting: int [https://docs.python.org/3/library/functions.html#int])

	An object containing debugging information.

Currently the following fields are defined:

	tasks_waiting: The number of tasks blocked on this event’s
trio.Event.wait() method.

Using channels to pass values between tasks

Channels allow you to safely and conveniently send objects between
different tasks. They’re particularly useful for implementing
producer/consumer patterns.

The core channel API is defined by the abstract base classes
trio.abc.SendChannel and trio.abc.ReceiveChannel.
You can use these to implement your own custom channels, that do
things like pass objects between processes or over the network. But in
many cases, you just want to pass objects between different tasks
inside a single process, and for that you can use
trio.open_memory_channel():

	
trio.open_memory_channel(max_buffer_size)

	Open a channel for passing objects between tasks within a process.

Memory channels are lightweight, cheap to allocate, and entirely
in-memory. They don’t involve any operating-system resources, or any kind
of serialization. They just pass Python objects directly between tasks
(with a possible stop in an internal buffer along the way).

Channel objects can be closed by calling aclose
or using async with. They are not automatically closed when garbage
collected. Closing memory channels isn’t mandatory, but it is generally a
good idea, because it helps avoid situations where tasks get stuck waiting
on a channel when there’s no-one on the other side. See
Clean shutdown with channels for details.

Memory channel operations are all atomic with respect to
cancellation, either receive will
successfully return an object, or it will raise Cancelled
while leaving the channel unchanged.

	Parameters:

	max_buffer_size (int [https://docs.python.org/3/library/functions.html#int] or math.inf) – The maximum number of items that can
be buffered in the channel before send()
blocks. Choosing a sensible value here is important to ensure that
backpressure is communicated promptly and avoid unnecessary latency;
see Buffering in channels for more details. If in doubt, use 0.

	Returns:

	A pair (send_channel, receive_channel). If you have
trouble remembering which order these go in, remember: data
flows from left → right.

In addition to the standard channel methods, all memory channel objects
provide a statistics() method, which returns an object with the
following fields:

	current_buffer_used: The number of items currently stored in the
channel buffer.

	max_buffer_size: The maximum number of items allowed in the buffer,
as passed to open_memory_channel().

	open_send_channels: The number of open
MemorySendChannel endpoints pointing to this channel.
Initially 1, but can be increased by
MemorySendChannel.clone().

	open_receive_channels: Likewise, but for open
MemoryReceiveChannel endpoints.

	tasks_waiting_send: The number of tasks blocked in send on this
channel (summing over all clones).

	tasks_waiting_receive: The number of tasks blocked in receive on
this channel (summing over all clones).

Note

If you’ve used the threading [https://docs.python.org/3/library/threading.html#module-threading] or asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio]
modules, you may be familiar with queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue] or
asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]. In Trio, open_memory_channel() is
what you use when you’re looking for a queue. The main difference
is that Trio splits the classic queue interface up into two
objects. The advantage of this is that it makes it possible to put
the two ends in different processes without rewriting your code,
and that we can close the two sides separately.

MemorySendChannel and MemoryReceiveChannel also expose several
more features beyond the core channel interface:

	
class trio.MemorySendChannel(*args: object [https://docs.python.org/3/library/functions.html#object], **kwargs: object [https://docs.python.org/3/library/functions.html#object])

	
	
clone() → MemorySendChannel[SendType [https://docs.python.org/3/library/typing.html#typing.TypeVar]]

	Clone this send channel object.

This returns a new MemorySendChannel object, which acts as a
duplicate of the original: sending on the new object does exactly the
same thing as sending on the old object. (If you’re familiar with
os.dup [https://docs.python.org/3/library/os.html#os.dup], then this is a similar idea.)

However, closing one of the objects does not close the other, and
receivers don’t get EndOfChannel until all clones have been
closed.

This is useful for communication patterns that involve multiple
producers all sending objects to the same destination. If you give
each producer its own clone of the MemorySendChannel, and then make
sure to close each MemorySendChannel when it’s finished, receivers
will automatically get notified when all producers are finished. See
Managing multiple producers and/or multiple consumers for examples.

	Raises:

	trio.ClosedResourceError – if you already closed this
 MemorySendChannel object.

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Close this send channel object synchronously.

All channel objects have an asynchronous aclose method.
Memory channels can also be closed synchronously. This has the same
effect on the channel and other tasks using it, but close is not a
trio checkpoint. This simplifies cleaning up in cancelled tasks.

Using with send_channel: will close the channel object on leaving
the with block.

	
await send(value: SendType [https://docs.python.org/3/library/typing.html#typing.TypeVar]) → None [https://docs.python.org/3/library/constants.html#None]

	See SendChannel.send.

Memory channels allow multiple tasks to call send at the same time.

	
send_nowait(value: SendType [https://docs.python.org/3/library/typing.html#typing.TypeVar]) → None [https://docs.python.org/3/library/constants.html#None]

	Like send, but if the channel’s buffer is
full, raises WouldBlock instead of blocking.

	
class trio.MemoryReceiveChannel(*args: object [https://docs.python.org/3/library/functions.html#object], **kwargs: object [https://docs.python.org/3/library/functions.html#object])

	
	
clone() → MemoryReceiveChannel[ReceiveType [https://docs.python.org/3/library/typing.html#typing.TypeVar]]

	Clone this receive channel object.

This returns a new MemoryReceiveChannel object, which acts as a
duplicate of the original: receiving on the new object does exactly
the same thing as receiving on the old object.

However, closing one of the objects does not close the other, and the
underlying channel is not closed until all clones are closed. (If
you’re familiar with os.dup [https://docs.python.org/3/library/os.html#os.dup], then this is a similar idea.)

This is useful for communication patterns that involve multiple
consumers all receiving objects from the same underlying channel. See
Managing multiple producers and/or multiple consumers for examples.

Warning

The clones all share the same underlying channel.
Whenever a clone receive()s a value, it is removed from the
channel and the other clones do not receive that value. If you
want to send multiple copies of the same stream of values to
multiple destinations, like itertools.tee() [https://docs.python.org/3/library/itertools.html#itertools.tee], then you need to
find some other solution; this method does not do that.

	Raises:

	trio.ClosedResourceError – if you already closed this
 MemoryReceiveChannel object.

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Close this receive channel object synchronously.

All channel objects have an asynchronous aclose method.
Memory channels can also be closed synchronously. This has the same
effect on the channel and other tasks using it, but close is not a
trio checkpoint. This simplifies cleaning up in cancelled tasks.

Using with receive_channel: will close the channel object on
leaving the with block.

	
await receive() → ReceiveType [https://docs.python.org/3/library/typing.html#typing.TypeVar]

	See ReceiveChannel.receive.

Memory channels allow multiple tasks to call receive at the same
time. The first task will get the first item sent, the second task
will get the second item sent, and so on.

	
receive_nowait() → ReceiveType [https://docs.python.org/3/library/typing.html#typing.TypeVar]

	Like receive, but if there’s nothing
ready to receive, raises WouldBlock instead of blocking.

A simple channel example

Here’s a simple example of how to use memory channels:

import trio

async def main():
 async with trio.open_nursery() as nursery:
 # Open a channel:
 send_channel, receive_channel = trio.open_memory_channel(0)
 # Start a producer and a consumer, passing one end of the channel to
 # each of them:
 nursery.start_soon(producer, send_channel)
 nursery.start_soon(consumer, receive_channel)

async def producer(send_channel):
 # Producer sends 3 messages
 for i in range(3):
 # The producer sends using 'await send_channel.send(...)'
 await send_channel.send(f"message {i}")

async def consumer(receive_channel):
 # The consumer uses an 'async for' loop to receive the values:
 async for value in receive_channel:
 print(f"got value {value!r}")

trio.run(main)

If you run this, it prints:

got value "message 0"
got value "message 1"
got value "message 2"

And then it hangs forever. (Use control-C to quit.)

Clean shutdown with channels

Of course we don’t generally like it when programs hang. What
happened? The problem is that the producer sent 3 messages and then
exited, but the consumer has no way to tell that the producer is gone:
for all it knows, another message might be coming along any moment. So
it hangs forever waiting for the 4th message.

Here’s a new version that fixes this: it produces the same output as
the previous version, and then exits cleanly. The only change is the
addition of async with blocks inside the producer and consumer:

import trio

async def main():
 async with trio.open_nursery() as nursery:
 send_channel, receive_channel = trio.open_memory_channel(0)
 nursery.start_soon(producer, send_channel)
 nursery.start_soon(consumer, receive_channel)

async def producer(send_channel):
 async with send_channel:
 for i in range(3):
 await send_channel.send(f"message {i}")

async def consumer(receive_channel):
 async with receive_channel:
 async for value in receive_channel:
 print(f"got value {value!r}")

trio.run(main)

The really important thing here is the producer’s async with .
When the producer exits, this closes the send_channel, and that
tells the consumer that no more messages are coming, so it can cleanly
exit its async for loop. Then the program shuts down because both
tasks have exited.

We also added an async with to the consumer. This isn’t as
important, but it can help us catch mistakes or other problems. For
example, suppose that the consumer exited early for some reason –
maybe because of a bug. Then the producer would be sending messages
into the void, and might get stuck indefinitely. But, if the consumer
closes its receive_channel, then the producer will get a
BrokenResourceError to alert it that it should stop sending
messages because no-one is listening.

If you want to see the effect of the consumer exiting early, try
adding a break statement to the async for loop – you should
see a BrokenResourceError from the producer.

Managing multiple producers and/or multiple consumers

You can also have multiple producers, and multiple consumers, all
sharing the same channel. However, this makes shutdown a little more
complicated.

For example, consider this naive extension of our previous example,
now with two producers and two consumers:

This example usually crashes!

import trio
import random

async def main():
 async with trio.open_nursery() as nursery:
 send_channel, receive_channel = trio.open_memory_channel(0)
 # Start two producers
 nursery.start_soon(producer, "A", send_channel)
 nursery.start_soon(producer, "B", send_channel)
 # And two consumers
 nursery.start_soon(consumer, "X", receive_channel)
 nursery.start_soon(consumer, "Y", receive_channel)

async def producer(name, send_channel):
 async with send_channel:
 for i in range(3):
 await send_channel.send(f"{i} from producer {name}")
 # Random sleeps help trigger the problem more reliably
 await trio.sleep(random.random())

async def consumer(name, receive_channel):
 async with receive_channel:
 async for value in receive_channel:
 print(f"consumer {name} got value {value!r}")
 # Random sleeps help trigger the problem more reliably
 await trio.sleep(random.random())

trio.run(main)

The two producers, A and B, send 3 messages apiece. These are then
randomly distributed between the two consumers, X and Y. So we’re
hoping to see some output like:

consumer Y got value '0 from producer B'
consumer X got value '0 from producer A'
consumer Y got value '1 from producer A'
consumer Y got value '1 from producer B'
consumer X got value '2 from producer B'
consumer X got value '2 from producer A'

However, on most runs, that’s not what happens – the first part of the
output is OK, and then when we get to the end the program crashes with
ClosedResourceError. If you run the program a few times, you’ll
see that sometimes the traceback shows send crashing, and other
times it shows receive crashing, and you might even find that on
some runs it doesn’t crash at all.

Here’s what’s happening: suppose that producer A finishes first. It
exits, and its async with block closes the send_channel. But
wait! Producer B was still using that send_channel… so the next
time B calls send, it gets a ClosedResourceError.

Sometimes, though if we’re lucky, the two producers might finish at
the same time (or close enough), so they both make their last send
before either of them closes the send_channel.

But, even if that happens, we’re not out of the woods yet! After the
producers exit, the two consumers race to be the first to notice that
the send_channel has closed. Suppose that X wins the race. It
exits its async for loop, then exits the async with block…
and closes the receive_channel, while Y is still using it. Again,
this causes a crash.

We could avoid this by using some complicated bookkeeping to make sure
that only the last producer and the last consumer close their
channel endpoints… but that would be tiresome and fragile.
Fortunately, there’s a better way! Here’s a fixed version of our
program above:

import trio
import random

async def main():
 async with trio.open_nursery() as nursery:
 send_channel, receive_channel = trio.open_memory_channel(0)
 async with send_channel, receive_channel:
 # Start two producers, giving each its own private clone
 nursery.start_soon(producer, "A", send_channel.clone())
 nursery.start_soon(producer, "B", send_channel.clone())
 # And two consumers, giving each its own private clone
 nursery.start_soon(consumer, "X", receive_channel.clone())
 nursery.start_soon(consumer, "Y", receive_channel.clone())

async def producer(name, send_channel):
 async with send_channel:
 for i in range(3):
 await send_channel.send(f"{i} from producer {name}")
 # Random sleeps help trigger the problem more reliably
 await trio.sleep(random.random())

async def consumer(name, receive_channel):
 async with receive_channel:
 async for value in receive_channel:
 print(f"consumer {name} got value {value!r}")
 # Random sleeps help trigger the problem more reliably
 await trio.sleep(random.random())

trio.run(main)

This example demonstrates using the MemorySendChannel.clone and
MemoryReceiveChannel.clone methods. What these do is create copies
of our endpoints, that act just like the original – except that they
can be closed independently. And the underlying channel is only closed
after all the clones have been closed. So this completely solves our
problem with shutdown, and if you run this program, you’ll see it
print its six lines of output and then exits cleanly.

Notice a small trick we use: the code in main creates clone
objects to pass into all the child tasks, and then closes the original
objects using async with. Another option is to pass clones into
all-but-one of the child tasks, and then pass the original object into
the last task, like:

Also works, but is more finicky:
send_channel, receive_channel = trio.open_memory_channel(0)
nursery.start_soon(producer, "A", send_channel.clone())
nursery.start_soon(producer, "B", send_channel)
nursery.start_soon(consumer, "X", receive_channel.clone())
nursery.start_soon(consumer, "Y", receive_channel)

But this is more error-prone, especially if you use a loop to spawn
the producers/consumers.

Just make sure that you don’t write:

Broken, will cause program to hang:
send_channel, receive_channel = trio.open_memory_channel(0)
nursery.start_soon(producer, "A", send_channel.clone())
nursery.start_soon(producer, "B", send_channel.clone())
nursery.start_soon(consumer, "X", receive_channel.clone())
nursery.start_soon(consumer, "Y", receive_channel.clone())

Here we pass clones into the tasks, but never close the original
objects. That means we have 3 send channel objects (the original + two
clones), but we only close 2 of them, so the consumers will hang
around forever waiting for that last one to be closed.

Buffering in channels

When you call open_memory_channel(), you have to specify how
many values can be buffered internally in the channel. If the buffer
is full, then any task that calls send()
will stop and wait for another task to call
receive(). This is useful because it
produces backpressure: if the channel producers are running faster
than the consumers, then it forces the producers to slow down.

You can disable buffering entirely, by doing
open_memory_channel(0). In that case any task that calls
send() will wait until another task calls
receive(), and vice versa. This is similar to
how channels work in the classic Communicating Sequential Processes
model [https://en.wikipedia.org/wiki/Channel_(programming)], and is
a reasonable default if you aren’t sure what size buffer to use.
(That’s why we used it in the examples above.)

At the other extreme, you can make the buffer unbounded by using
open_memory_channel(math.inf). In this case,
send() always returns immediately.
Normally, this is a bad idea. To see why, consider a program where the
producer runs more quickly than the consumer:

Simulate a producer that generates values 10x faster than the
consumer can handle them.

import trio
import math

async def producer(send_channel):
 count = 0
 while True:
 # Pretend that we have to do some work to create this message, and it
 # takes 0.1 seconds:
 await trio.sleep(0.1)
 await send_channel.send(count)
 print("Sent message:", count)
 count += 1

async def consumer(receive_channel):
 async for value in receive_channel:
 print("Received message:", value)
 # Pretend that we have to do some work to handle this message, and it
 # takes 1 second
 await trio.sleep(1)

async def main():
 send_channel, receive_channel = trio.open_memory_channel(math.inf)
 async with trio.open_nursery() as nursery:
 nursery.start_soon(producer, send_channel)
 nursery.start_soon(consumer, receive_channel)

trio.run(main)

If you run this program, you’ll see output like:

Sent message: 0
Received message: 0
Sent message: 1
Sent message: 2
Sent message: 3
Sent message: 4
Sent message: 5
Sent message: 6
Sent message: 7
Sent message: 8
Sent message: 9
Received message: 1
Sent message: 10
Sent message: 11
Sent message: 12
...

On average, the producer sends ten messages per second, but the
consumer only calls receive once per second. That means that each
second, the channel’s internal buffer has to grow to hold an extra
nine items. After a minute, the buffer will have ~540 items in it;
after an hour, that grows to ~32,400. Eventually, the program will run
out of memory. And well before we run out of memory, our latency on
handling individual messages will become abysmal. For example, at the
one minute mark, the producer is sending message ~600, but the
consumer is still processing message ~60. Message 600 will have to sit
in the channel for ~9 minutes before the consumer catches up and
processes it.

Now try replacing open_memory_channel(math.inf) with
open_memory_channel(0), and run it again. We get output like:

Sent message: 0
Received message: 0
Received message: 1
Sent message: 1
Received message: 2
Sent message: 2
Sent message: 3
Received message: 3
...

Now the send calls wait for the receive calls to finish, which
forces the producer to slow down to match the consumer’s speed. (It
might look strange that some values are reported as “Received” before
they’re reported as “Sent”; this happens because the actual
send/receive happen at the same time, so which line gets printed first
is random.)

Now, let’s try setting a small but nonzero buffer size, like
open_memory_channel(3). what do you think will happen?

I get:

Sent message: 0
Received message: 0
Sent message: 1
Sent message: 2
Sent message: 3
Received message: 1
Sent message: 4
Received message: 2
Sent message: 5
...

So you can see that the producer runs ahead by 3 messages, and then
stops to wait: when the consumer reads message 1, it sends message 4,
then when the consumer reads message 2, it sends message 5, and so on.
Once it reaches the steady state, this version acts just like our
previous version where we set the buffer size to 0, except that it
uses a bit more memory and each message sits in the buffer for a bit
longer before being processed (i.e., the message latency is higher).

Of course real producers and consumers are usually more complicated
than this, and in some situations, a modest amount of buffering might
improve throughput. But too much buffering wastes memory and increases
latency, so if you want to tune your application you should experiment
to see what value works best for you.

Why do we even support unbounded buffers then? Good question!
Despite everything we saw above, there are times when you actually do
need an unbounded buffer. For example, consider a web crawler that
uses a channel to keep track of all the URLs it still wants to crawl.
Each crawler runs a loop where it takes a URL from the channel,
fetches it, checks the HTML for outgoing links, and then adds the new
URLs to the channel. This creates a circular flow, where each
consumer is also a producer. In this case, if your channel buffer gets
full, then the crawlers will block when they try to add new URLs to
the channel, and if all the crawlers got blocked, then they aren’t
taking any URLs out of the channel, so they’re stuck forever in a
deadlock. Using an unbounded channel avoids this, because it means
that send() never blocks.

Lower-level synchronization primitives

Personally, I find that events and channels are usually enough to
implement most things I care about, and lead to easier to read code
than the lower-level primitives discussed in this section. But if you
need them, they’re here. (If you find yourself reaching for these
because you’re trying to implement a new higher-level synchronization
primitive, then you might also want to check out the facilities in
trio.lowlevel for a more direct exposure of Trio’s underlying
synchronization logic. All of classes discussed in this section are
implemented on top of the public APIs in trio.lowlevel; they
don’t have any special access to Trio’s internals.)

	
class trio.CapacityLimiter(total_tokens: int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float])

	An object for controlling access to a resource with limited capacity.

Sometimes you need to put a limit on how many tasks can do something at
the same time. For example, you might want to use some threads to run
multiple blocking I/O operations in parallel… but if you use too many
threads at once, then your system can become overloaded and it’ll actually
make things slower. One popular solution is to impose a policy like “run
up to 40 threads at the same time, but no more”. But how do you implement
a policy like this?

That’s what CapacityLimiter is for. You can think of a
CapacityLimiter object as a sack that starts out holding some fixed
number of tokens:

limit = trio.CapacityLimiter(40)

Then tasks can come along and borrow a token out of the sack:

Borrow a token:
async with limit:
 # We are holding a token!
 await perform_expensive_operation()
Exiting the 'async with' block puts the token back into the sack

And crucially, if you try to borrow a token but the sack is empty, then
you have to wait for another task to finish what it’s doing and put its
token back first before you can take it and continue.

Another way to think of it: a CapacityLimiter is like a sofa with a
fixed number of seats, and if they’re all taken then you have to wait for
someone to get up before you can sit down.

By default, trio.to_thread.run_sync() uses a
CapacityLimiter to limit the number of threads running at once;
see trio.to_thread.current_default_thread_limiter for details.

If you’re familiar with semaphores, then you can think of this as a
restricted semaphore that’s specialized for one common use case, with
additional error checking. For a more traditional semaphore, see
Semaphore.

Note

Don’t confuse this with the “leaky bucket” [https://en.wikipedia.org/wiki/Leaky_bucket] or “token bucket” [https://en.wikipedia.org/wiki/Token_bucket] algorithms used to
limit bandwidth usage on networks. The basic idea of using tokens to
track a resource limit is similar, but this is a very simple sack where
tokens aren’t automatically created or destroyed over time; they’re
just borrowed and then put back.

	
await acquire() → None [https://docs.python.org/3/library/constants.html#None]

	Borrow a token from the sack, blocking if necessary.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if the current task already holds one of this sack’s
 tokens.

	
acquire_nowait() → None [https://docs.python.org/3/library/constants.html#None]

	Borrow a token from the sack, without blocking.

	Raises:

	
	WouldBlock – if no tokens are available.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if the current task already holds one of this sack’s
 tokens.

	
await acquire_on_behalf_of(borrower: Task | object [https://docs.python.org/3/library/functions.html#object]) → None [https://docs.python.org/3/library/constants.html#None]

	Borrow a token from the sack on behalf of borrower, blocking if
necessary.

	Parameters:

	borrower – A trio.lowlevel.Task or arbitrary opaque object
used to record who is borrowing this token; see
acquire_on_behalf_of_nowait() for details.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if borrower task already holds one of this sack’s
 tokens.

	
acquire_on_behalf_of_nowait(borrower: Task | object [https://docs.python.org/3/library/functions.html#object]) → None [https://docs.python.org/3/library/constants.html#None]

	Borrow a token from the sack on behalf of borrower, without
blocking.

	Parameters:

	borrower – A trio.lowlevel.Task or arbitrary opaque object
used to record who is borrowing this token. This is used by
trio.to_thread.run_sync() to allow threads to “hold
tokens”, with the intention in the future of using it to allow
deadlock detection and other useful things [https://github.com/python-trio/trio/issues/182]

	Raises:

	
	WouldBlock – if no tokens are available.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if borrower already holds one of this sack’s
 tokens.

	
property available_tokens: int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float]

	The amount of capacity that’s available to use.

	
property borrowed_tokens: int [https://docs.python.org/3/library/functions.html#int]

	The amount of capacity that’s currently in use.

	
release() → None [https://docs.python.org/3/library/constants.html#None]

	Put a token back into the sack.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if the current task has not acquired one of this
 sack’s tokens.

	
release_on_behalf_of(borrower: Task | object [https://docs.python.org/3/library/functions.html#object]) → None [https://docs.python.org/3/library/constants.html#None]

	Put a token back into the sack on behalf of borrower.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if the given borrower has not acquired one of this
 sack’s tokens.

	
statistics() → CapacityLimiterStatistics

	Return an object containing debugging information.

Currently the following fields are defined:

	borrowed_tokens: The number of tokens currently borrowed from
the sack.

	total_tokens: The total number of tokens in the sack. Usually
this will be larger than borrowed_tokens, but it’s possibly for
it to be smaller if total_tokens was recently decreased.

	borrowers: A list of all tasks or other entities that currently
hold a token.

	tasks_waiting: The number of tasks blocked on this
CapacityLimiter’s acquire() or
acquire_on_behalf_of() methods.

	
property total_tokens: int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float]

	The total capacity available.

You can change total_tokens by assigning to this attribute. If
you make it larger, then the appropriate number of waiting tasks will
be woken immediately to take the new tokens. If you decrease
total_tokens below the number of tasks that are currently using the
resource, then all current tasks will be allowed to finish as normal,
but no new tasks will be allowed in until the total number of tasks
drops below the new total_tokens.

	
class trio.Semaphore(initial_value: int [https://docs.python.org/3/library/functions.html#int], *, max_value: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None)

	A semaphore [https://en.wikipedia.org/wiki/Semaphore_(programming)].

A semaphore holds an integer value, which can be incremented by
calling release() and decremented by calling acquire() – but
the value is never allowed to drop below zero. If the value is zero, then
acquire() will block until someone calls release().

If you’re looking for a Semaphore to limit the number of tasks
that can access some resource simultaneously, then consider using a
CapacityLimiter instead.

This object’s interface is similar to, but different from, that of
threading.Semaphore [https://docs.python.org/3/library/threading.html#threading.Semaphore].

A Semaphore object can be used as an async context manager; it
blocks on entry but not on exit.

	Parameters:

	
	initial_value (int [https://docs.python.org/3/library/functions.html#int]) – A non-negative integer giving semaphore’s initial
value.

	max_value (int [https://docs.python.org/3/library/functions.html#int] or None) – If given, makes this a “bounded” semaphore that
raises an error if the value is about to exceed the given
max_value.

	
await acquire() → None [https://docs.python.org/3/library/constants.html#None]

	Decrement the semaphore value, blocking if necessary to avoid
letting it drop below zero.

	
acquire_nowait() → None [https://docs.python.org/3/library/constants.html#None]

	Attempt to decrement the semaphore value, without blocking.

	Raises:

	WouldBlock – if the value is zero.

	
property max_value: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	The maximum allowed value. May be None to indicate no limit.

	
release() → None [https://docs.python.org/3/library/constants.html#None]

	Increment the semaphore value, possibly waking a task blocked in
acquire().

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if incrementing the value would cause it to exceed
 max_value.

	
statistics() → ParkingLotStatistics

	Return an object containing debugging information.

Currently the following fields are defined:

	tasks_waiting: The number of tasks blocked on this semaphore’s
acquire() method.

	
property value: int [https://docs.python.org/3/library/functions.html#int]

	The current value of the semaphore.

	
class trio.Lock

	A classic mutex [https://en.wikipedia.org/wiki/Lock_(computer_science)].

This is a non-reentrant, single-owner lock. Unlike
threading.Lock [https://docs.python.org/3/library/threading.html#threading.Lock], only the owner of the lock is allowed to release
it.

A Lock object can be used as an async context manager; it
blocks on entry but not on exit.

	
await acquire() → None [https://docs.python.org/3/library/constants.html#None]

	Acquire the lock, blocking if necessary.

	
acquire_nowait() → None [https://docs.python.org/3/library/constants.html#None]

	Attempt to acquire the lock, without blocking.

	Raises:

	WouldBlock – if the lock is held.

	
locked() → bool [https://docs.python.org/3/library/functions.html#bool]

	Check whether the lock is currently held.

	Returns:

	True if the lock is held, False otherwise.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
release() → None [https://docs.python.org/3/library/constants.html#None]

	Release the lock.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if the calling task does not hold the lock.

	
statistics() → LockStatistics

	Return an object containing debugging information.

Currently the following fields are defined:

	locked: boolean indicating whether the lock is held.

	owner: the trio.lowlevel.Task currently holding the lock,
or None if the lock is not held.

	tasks_waiting: The number of tasks blocked on this lock’s
acquire() method.

	
class trio.StrictFIFOLock

	A variant of Lock where tasks are guaranteed to acquire the
lock in strict first-come-first-served order.

An example of when this is useful is if you’re implementing something like
trio.SSLStream or an HTTP/2 server using h2 [https://hyper-h2.readthedocs.io/], where you have multiple concurrent
tasks that are interacting with a shared state machine, and at
unpredictable moments the state machine requests that a chunk of data be
sent over the network. (For example, when using h2 simply reading incoming
data can occasionally create outgoing data to send [https://http2.github.io/http2-spec/#PING].) The challenge is to make
sure that these chunks are sent in the correct order, without being
garbled.

One option would be to use a regular Lock, and wrap it around
every interaction with the state machine:

This approach is sometimes workable but often sub-optimal; see below
async with lock:
 state_machine.do_something()
 if state_machine.has_data_to_send():
 await conn.sendall(state_machine.get_data_to_send())

But this can be problematic. If you’re using h2 then usually reading
incoming data doesn’t create the need to send any data, so we don’t want
to force every task that tries to read from the network to sit and wait
a potentially long time for sendall to finish. And in some situations
this could even potentially cause a deadlock, if the remote peer is
waiting for you to read some data before it accepts the data you’re
sending.

StrictFIFOLock provides an alternative. We can rewrite our
example like:

Note: no awaits between when we start using the state machine and
when we block to take the lock!
state_machine.do_something()
if state_machine.has_data_to_send():
 # Notice that we fetch the data to send out of the state machine
 # *before* sleeping, so that other tasks won't see it.
 chunk = state_machine.get_data_to_send()
 async with strict_fifo_lock:
 await conn.sendall(chunk)

First we do all our interaction with the state machine in a single
scheduling quantum (notice there are no awaits in there), so it’s
automatically atomic with respect to other tasks. And then if and only if
we have data to send, we get in line to send it – and
StrictFIFOLock guarantees that each task will send its data in
the same order that the state machine generated it.

Currently, StrictFIFOLock is identical to Lock,
but (a) this may not always be true in the future, especially if Trio ever
implements more sophisticated scheduling policies [https://github.com/python-trio/trio/issues/32], and (b) the above code
is relying on a pretty subtle property of its lock. Using a
StrictFIFOLock acts as an executable reminder that you’re relying
on this property.

	
class trio.Condition(lock: Lock | None [https://docs.python.org/3/library/constants.html#None] = None)

	A classic condition variable [https://en.wikipedia.org/wiki/Monitor_(synchronization)], similar to
threading.Condition [https://docs.python.org/3/library/threading.html#threading.Condition].

A Condition object can be used as an async context manager to
acquire the underlying lock; it blocks on entry but not on exit.

	Parameters:

	lock (Lock) – the lock object to use. If given, must be a
trio.Lock. If None, a new Lock will be allocated
and used.

	
await acquire() → None [https://docs.python.org/3/library/constants.html#None]

	Acquire the underlying lock, blocking if necessary.

	
acquire_nowait() → None [https://docs.python.org/3/library/constants.html#None]

	Attempt to acquire the underlying lock, without blocking.

	Raises:

	WouldBlock – if the lock is currently held.

	
locked() → bool [https://docs.python.org/3/library/functions.html#bool]

	Check whether the underlying lock is currently held.

	Returns:

	True if the lock is held, False otherwise.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
notify(n: int [https://docs.python.org/3/library/functions.html#int] = 1) → None [https://docs.python.org/3/library/constants.html#None]

	Wake one or more tasks that are blocked in wait().

	Parameters:

	n (int [https://docs.python.org/3/library/functions.html#int]) – The number of tasks to wake.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if the calling task does not hold the lock.

	
notify_all() → None [https://docs.python.org/3/library/constants.html#None]

	Wake all tasks that are currently blocked in wait().

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if the calling task does not hold the lock.

	
release() → None [https://docs.python.org/3/library/constants.html#None]

	Release the underlying lock.

	
statistics() → ConditionStatistics

	Return an object containing debugging information.

Currently the following fields are defined:

	tasks_waiting: The number of tasks blocked on this condition’s
wait() method.

	lock_statistics: The result of calling the underlying
Locks statistics() method.

	
await wait() → None [https://docs.python.org/3/library/constants.html#None]

	Wait for another task to call notify() or
notify_all().

When calling this method, you must hold the lock. It releases the lock
while waiting, and then re-acquires it before waking up.

There is a subtlety with how this method interacts with cancellation:
when cancelled it will block to re-acquire the lock before raising
Cancelled. This may cause cancellation to be less prompt than
expected. The advantage is that it makes code like this work:

async with condition:
 await condition.wait()

If we didn’t re-acquire the lock before waking up, and wait()
were cancelled here, then we’d crash in condition.__aexit__ when
we tried to release the lock we no longer held.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if the calling task does not hold the lock.

These primitives return statistics objects that can be inspected.

	
class trio.CapacityLimiterStatistics(borrowed_tokens: int [https://docs.python.org/3/library/functions.html#int], total_tokens: int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float], borrowers: list [https://docs.python.org/3/library/stdtypes.html#list][Task | object [https://docs.python.org/3/library/functions.html#object]], tasks_waiting: int [https://docs.python.org/3/library/functions.html#int])

	An object containing debugging information.

Currently the following fields are defined:

	borrowed_tokens: The number of tokens currently borrowed from
the sack.

	total_tokens: The total number of tokens in the sack. Usually
this will be larger than borrowed_tokens, but it’s possibly for
it to be smaller if trio.CapacityLimiter.total_tokens was recently decreased.

	borrowers: A list of all tasks or other entities that currently
hold a token.

	tasks_waiting: The number of tasks blocked on this
CapacityLimiter’s trio.CapacityLimiter.acquire() or
trio.CapacityLimiter.acquire_on_behalf_of() methods.

	
class trio.LockStatistics(locked: bool [https://docs.python.org/3/library/functions.html#bool], owner: Task | None [https://docs.python.org/3/library/constants.html#None], tasks_waiting: int [https://docs.python.org/3/library/functions.html#int])

	An object containing debugging information for a Lock.

Currently the following fields are defined:

	locked (boolean): indicating whether the lock is held.

	owner: the trio.lowlevel.Task currently holding the lock,
or None if the lock is not held.

	tasks_waiting (int): The number of tasks blocked on this lock’s
trio.Lock.acquire() method.

	
class trio.ConditionStatistics(tasks_waiting: int [https://docs.python.org/3/library/functions.html#int], lock_statistics: LockStatistics)

	An object containing debugging information for a Condition.

Currently the following fields are defined:

	tasks_waiting (int): The number of tasks blocked on this condition’s
trio.Condition.wait() method.

	lock_statistics: The result of calling the underlying
Locks statistics() method.

Notes on async generators

Python 3.6 added support for async generators, which can use
await, async for, and async with in between their yield
statements. As you might expect, you use async for to iterate
over them. PEP 525 [https://peps.python.org/pep-0525/] has many more details if you want them.

For example, the following is a roundabout way to print
the numbers 0 through 9 with a 1-second delay before each one:

async def range_slowly(*args):
 """Like range(), but adds a 1-second sleep before each value."""
 for value in range(*args):
 await trio.sleep(1)
 yield value

async def use_it():
 async for value in range_slowly(10):
 print(value)

trio.run(use_it)

Trio supports async generators, with some caveats described in this section.

Finalization

If you iterate over an async generator in its entirety, like the
example above does, then the execution of the async generator will
occur completely in the context of the code that’s iterating over it,
and there aren’t too many surprises.

If you abandon a partially-completed async generator, though, such as
by breaking out of the iteration, things aren’t so simple. The
async generator iterator object is still alive, waiting for you to
resume iterating it so it can produce more values. At some point,
Python will realize that you’ve dropped all references to the
iterator, and will call on Trio to throw in a GeneratorExit [https://docs.python.org/3/library/exceptions.html#GeneratorExit] exception
so that any remaining cleanup code inside the generator has a chance
to run: finally blocks, __aexit__ handlers, and so on.

So far, so good. Unfortunately, Python provides no guarantees about
when this happens. It could be as soon as you break out of the
async for loop, or an arbitrary amount of time later. It could
even be after the entire Trio run has finished! Just about the only
guarantee is that it won’t happen in the task that was using the
generator. That task will continue on with whatever else it’s doing,
and the async generator cleanup will happen “sometime later,
somewhere else”: potentially with different context variables,
not subject to timeouts, and/or after any nurseries you’re using have
been closed.

If you don’t like that ambiguity, and you want to ensure that a
generator’s finally blocks and __aexit__ handlers execute as
soon as you’re done using it, then you’ll need to wrap your use of the
generator in something like async_generator.aclosing() [https://async-generator.readthedocs.io/en/latest/reference.html#context-managers]:

Instead of this:
async for value in my_generator():
 if value == 42:
 break

Do this:
async with aclosing(my_generator()) as aiter:
 async for value in aiter:
 if value == 42:
 break

This is cumbersome, but Python unfortunately doesn’t provide any other
reliable options. If you use aclosing(), then
your generator’s cleanup code executes in the same context as the
rest of its iterations, so timeouts, exceptions, and context
variables work like you’d expect.

If you don’t use aclosing(), then Trio will do
its best anyway, but you’ll have to contend with the following semantics:

	The cleanup of the generator occurs in a cancelled context, i.e.,
all blocking calls executed during cleanup will raise Cancelled.
This is to compensate for the fact that any timeouts surrounding
the original use of the generator have been long since forgotten.

	The cleanup runs without access to any context variables that may have been present when the generator
was originally being used.

	If the generator raises an exception during cleanup, then it’s
printed to the trio.async_generator_errors logger and otherwise
ignored.

	If an async generator is still alive at the end of the whole
call to trio.run(), then it will be cleaned up after all
tasks have exited and before trio.run() returns.
Since the “system nursery” has already been closed at this point,
Trio isn’t able to support any new calls to
trio.lowlevel.spawn_system_task().

If you plan to run your code on PyPy to take advantage of its better
performance, you should be aware that PyPy is far more likely than
CPython to perform async generator cleanup at a time well after the
last use of the generator. (This is a consequence of the fact that
PyPy does not use reference counting to manage memory.) To help catch
issues like this, Trio will issue a ResourceWarning [https://docs.python.org/3/library/exceptions.html#ResourceWarning] (ignored by
default, but enabled when running under python -X dev for example)
for each async generator that needs to be handled through the fallback
finalization path.

Cancel scopes and nurseries

Warning

You may not write a yield statement that suspends an async generator
inside a CancelScope or Nursery that was entered within the generator.

That is, this is OK:

async def some_agen():
 with trio.move_on_after(1):
 await long_operation()
 yield "first"
 async with trio.open_nursery() as nursery:
 nursery.start_soon(task1)
 nursery.start_soon(task2)
 yield "second"
 ...

But this is not:

async def some_agen():
 with trio.move_on_after(1):
 yield "first"
 async with trio.open_nursery() as nursery:
 yield "second"
 ...

Async generators decorated with @asynccontextmanager to serve as
the template for an async context manager are not subject to this
constraint, because @asynccontextmanager uses them in a limited
way that doesn’t create problems.

Violating the rule described in this section will sometimes get you a
useful error message, but Trio is not able to detect all such cases,
so sometimes you’ll get an unhelpful TrioInternalError. (And
sometimes it will seem to work, which is probably the worst outcome of
all, since then you might not notice the issue until you perform some
minor refactoring of the generator or the code that’s iterating it, or
just get unlucky. There is a proposed Python enhancement [https://discuss.python.org/t/preventing-yield-inside-certain-context-managers/1091]
that would at least make it fail consistently.)

The reason for the restriction on cancel scopes has to do with the
difficulty of noticing when a generator gets suspended and
resumed. The cancel scopes inside the generator shouldn’t affect code
running outside the generator, but Trio isn’t involved in the process
of exiting and reentering the generator, so it would be hard pressed
to keep its cancellation plumbing in the correct state. Nurseries
use a cancel scope internally, so they have all the problems of cancel
scopes plus a number of problems of their own: for example, when
the generator is suspended, what should the background tasks do?
There’s no good way to suspend them, but if they keep running and throw
an exception, where can that exception be reraised?

If you have an async generator that wants to yield from within a nursery
or cancel scope, your best bet is to refactor it to be a separate task
that communicates over memory channels. The trio_util package offers a
decorator that does this for you transparently [https://trio-util.readthedocs.io/en/latest/#trio_util.trio_async_generator].

For more discussion, see
Trio issues 264 [https://github.com/python-trio/trio/issues/264]
(especially this comment [https://github.com/python-trio/trio/issues/264#issuecomment-418989328])
and 638 [https://github.com/python-trio/trio/issues/638].

Threads (if you must)

In a perfect world, all third-party libraries and low-level APIs would
be natively async and integrated into Trio, and all would be happiness
and rainbows.

That world, alas, does not (yet) exist. Until it does, you may find
yourself needing to interact with non-Trio APIs that do rude things
like “blocking”.

In acknowledgment of this reality, Trio provides two useful utilities
for working with real, operating-system level,
threading [https://docs.python.org/3/library/threading.html#module-threading]-module-style threads. First, if you’re in Trio but
need to push some blocking I/O into a thread, there’s
trio.to_thread.run_sync. And if you’re in a thread and need
to communicate back with Trio, you can use
trio.from_thread.run() and trio.from_thread.run_sync().

Trio’s philosophy about managing worker threads

If you’ve used other I/O frameworks, you may have encountered the
concept of a “thread pool”, which is most commonly implemented as a
fixed size collection of threads that hang around waiting for jobs to
be assigned to them. These solve two different problems: First,
re-using the same threads over and over is more efficient than
starting and stopping a new thread for every job you need done;
basically, the pool acts as a kind of cache for idle threads. And
second, having a fixed size avoids getting into a situation where
100,000 jobs are submitted simultaneously, and then 100,000 threads
are spawned and the system gets overloaded and crashes. Instead, the N
threads start executing the first N jobs, while the other
(100,000 - N) jobs sit in a queue and wait their turn. Which is
generally what you want, and this is how
trio.to_thread.run_sync() works by default.

The downside of this kind of thread pool is that sometimes, you need
more sophisticated logic for controlling how many threads are run at
once. For example, you might want a policy like “at most 20 threads
total, but no more than 3 of those can be running jobs associated with
the same user account”, or you might want a pool whose size is
dynamically adjusted over time in response to system conditions.

It’s even possible for a fixed-size policy to cause unexpected
deadlocks [https://en.wikipedia.org/wiki/Deadlock]. Imagine a
situation where we have two different types of blocking jobs that you
want to run in the thread pool, type A and type B. Type A is pretty
simple: it just runs and completes pretty quickly. But type B is more
complicated: it has to stop in the middle and wait for some other work
to finish, and that other work includes running a type A job. Now,
suppose you submit N jobs of type B to the pool. They all start
running, and then eventually end up submitting one or more jobs of
type A. But since every thread in our pool is already busy, the type A
jobs don’t actually start running – they just sit in a queue waiting
for the type B jobs to finish. But the type B jobs will never finish,
because they’re waiting for the type A jobs. Our system has
deadlocked. The ideal solution to this problem is to avoid having type
B jobs in the first place – generally it’s better to keep complex
synchronization logic in the main Trio thread. But if you can’t do
that, then you need a custom thread allocation policy that tracks
separate limits for different types of jobs, and make it impossible
for type B jobs to fill up all the slots that type A jobs need to run.

So, we can see that it’s important to be able to change the policy
controlling the allocation of threads to jobs. But in many frameworks,
this requires implementing a new thread pool from scratch, which is
highly non-trivial; and if different types of jobs need different
policies, then you may have to create multiple pools, which is
inefficient because now you effectively have two different thread
caches that aren’t sharing resources.

Trio’s solution to this problem is to split worker thread management
into two layers. The lower layer is responsible for taking blocking
I/O jobs and arranging for them to run immediately on some worker
thread. It takes care of solving the tricky concurrency problems
involved in managing threads and is responsible for optimizations like
re-using threads, but has no admission control policy: if you give it
100,000 jobs, it will spawn 100,000 threads. The upper layer is
responsible for providing the policy to make sure that this doesn’t
happen – but since it only has to worry about policy, it can be much
simpler. In fact, all there is to it is the limiter= argument
passed to trio.to_thread.run_sync(). This defaults to a global
CapacityLimiter object, which gives us the classic fixed-size
thread pool behavior. (See
trio.to_thread.current_default_thread_limiter().) But if you
want to use “separate pools” for type A jobs and type B jobs, then
it’s just a matter of creating two separate CapacityLimiter
objects and passing them in when running these jobs. Or here’s an
example of defining a custom policy that respects the global thread
limit, while making sure that no individual user can use more than 3
threads at a time:

class CombinedLimiter:
 def __init__(self, first, second):
 self._first = first
 self._second = second

 async def acquire_on_behalf_of(self, borrower):
 # Acquire both, being careful to clean up properly on error
 await self._first.acquire_on_behalf_of(borrower)
 try:
 await self._second.acquire_on_behalf_of(borrower)
 except:
 self._first.release_on_behalf_of(borrower)
 raise

 def release_on_behalf_of(self, borrower):
 # Release both, being careful to clean up properly on error
 try:
 self._second.release_on_behalf_of(borrower)
 finally:
 self._first.release_on_behalf_of(borrower)

Use a weak value dictionary, so that we don't waste memory holding
limiter objects for users who don't have any worker threads running.
USER_LIMITERS = weakref.WeakValueDictionary()
MAX_THREADS_PER_USER = 3

def get_user_limiter(user_id):
 try:
 return USER_LIMITERS[user_id]
 except KeyError:
 per_user_limiter = trio.CapacityLimiter(MAX_THREADS_PER_USER)
 global_limiter = trio.current_default_thread_limiter()
 # IMPORTANT: acquire the per_user_limiter before the global_limiter.
 # If we get 100 jobs for a user at the same time, we want
 # to only allow 3 of them at a time to even compete for the
 # global thread slots.
 combined_limiter = CombinedLimiter(per_user_limiter, global_limiter)
 USER_LIMITERS[user_id] = combined_limiter
 return combined_limiter

async def run_sync_in_thread_for_user(user_id, sync_fn, *args):
 combined_limiter = get_user_limiter(user_id)
 return await trio.to_thread.run_sync(sync_fn, *args, limiter=combined_limiter)

Putting blocking I/O into worker threads

	
await trio.to_thread.run_sync(sync_fn: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], RetT [https://docs.python.org/3/library/typing.html#typing.TypeVar]], *args: object [https://docs.python.org/3/library/functions.html#object], thread_name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, abandon_on_cancel: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, cancellable: bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None] = None, limiter: CapacityLimiter | None [https://docs.python.org/3/library/constants.html#None] = None) → RetT [https://docs.python.org/3/library/typing.html#typing.TypeVar]

	Convert a blocking operation into an async operation using a thread.

These two lines are equivalent:

sync_fn(*args)
await trio.to_thread.run_sync(sync_fn, *args)

except that if sync_fn takes a long time, then the first line will
block the Trio loop while it runs, while the second line allows other Trio
tasks to continue working while sync_fn runs. This is accomplished by
pushing the call to sync_fn(*args) off into a worker thread.

From inside the worker thread, you can get back into Trio using the
functions in trio.from_thread.

	Parameters:

	
	sync_fn – An arbitrary synchronous callable.

	*args – Positional arguments to pass to sync_fn. If you need keyword
arguments, use functools.partial() [https://docs.python.org/3/library/functools.html#functools.partial].

	abandon_on_cancel (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to abandon this thread upon
cancellation of this operation. See discussion below.

	thread_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional string to set the name of the thread.
Will always set threading.Thread.name [https://docs.python.org/3/library/threading.html#threading.Thread.name], but only set the os name
if pthread.h is available (i.e. most POSIX installations).
pthread names are limited to 15 characters, and can be read from
/proc/<PID>/task/<SPID>/comm or with ps -eT, among others.
Defaults to {sync_fn.__name__|None} from {trio.lowlevel.current_task().name}.

	limiter (None, or CapacityLimiter-like object) – An object used to limit the number of simultaneous threads. Most
commonly this will be a CapacityLimiter, but it could be
anything providing compatible
acquire_on_behalf_of() and
release_on_behalf_of() methods. This
function will call acquire_on_behalf_of before starting the
thread, and release_on_behalf_of after the thread has finished.

If None (the default), uses the default CapacityLimiter, as
returned by current_default_thread_limiter().

Cancellation handling: Cancellation is a tricky issue here, because
neither Python nor the operating systems it runs on provide any general
mechanism for cancelling an arbitrary synchronous function running in a
thread. This function will always check for cancellation on entry, before
starting the thread. But once the thread is running, there are two ways it
can handle being cancelled:

	If abandon_on_cancel=False, the function ignores the cancellation and
keeps going, just like if we had called sync_fn synchronously. This
is the default behavior.

	If abandon_on_cancel=True, then this function immediately raises
Cancelled. In this case the thread keeps running in
background – we just abandon it to do whatever it’s going to do, and
silently discard any return value or errors that it raises. Only use
this if you know that the operation is safe and side-effect free. (For
example: trio.socket.getaddrinfo() uses a thread with
abandon_on_cancel=True, because it doesn’t really affect anything if a
stray hostname lookup keeps running in the background.)

The limiter is only released after the thread has actually
finished – which in the case of cancellation may be some time after this
function has returned. If trio.run() finishes before the thread
does, then the limiter release method will never be called at all.

Warning

You should not use this function to call long-running CPU-bound
functions! In addition to the usual GIL-related reasons why using
threads for CPU-bound work is not very effective in Python, there is an
additional problem: on CPython, CPU-bound threads tend to “starve out”
IO-bound threads [https://bugs.python.org/issue7946], so using
threads for CPU-bound work is likely to adversely affect the main
thread running Trio. If you need to do this, you’re better off using a
worker process, or perhaps PyPy (which still has a GIL, but may do a
better job of fairly allocating CPU time between threads).

	Returns:

	Whatever sync_fn(*args) returns.

	Raises:

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – Whatever sync_fn(*args) raises.

	
trio.to_thread.current_default_thread_limiter() → CapacityLimiter

	Get the default CapacityLimiter used by
trio.to_thread.run_sync.

The most common reason to call this would be if you want to modify its
total_tokens attribute.

Getting back into the Trio thread from another thread

	
trio.from_thread.run(afn: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], Awaitable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Awaitable][RetT [https://docs.python.org/3/library/typing.html#typing.TypeVar]]], *args: object [https://docs.python.org/3/library/functions.html#object], trio_token: TrioToken | None [https://docs.python.org/3/library/constants.html#None] = None) → RetT [https://docs.python.org/3/library/typing.html#typing.TypeVar]

	Run the given async function in the parent Trio thread, blocking until it
is complete.

	Returns:

	Whatever afn(*args) returns.

Returns or raises whatever the given function returns or raises. It
can also raise exceptions of its own:

	Raises:

	
	RunFinishedError – if the corresponding call to trio.run() has
 already completed, or if the run has started its final cleanup phase
 and can no longer spawn new system tasks.

	Cancelled – If the original call to trio.to_thread.run_sync() is cancelled
 (if trio_token is None) or the call to trio.run() completes
 (if trio_token is not None) while afn(*args) is running,
 then afn is likely to raise trio.Cancelled.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if you try calling this from inside the Trio thread,
 which would otherwise cause a deadlock, or if no trio_token was
 provided, and we can’t infer one from context.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if afn is not an asynchronous function.

Locating a TrioToken: There are two ways to specify which
trio.run loop to reenter:

	Spawn this thread from trio.to_thread.run_sync. Trio will
automatically capture the relevant Trio token and use it
to re-enter the same Trio task.

	Pass a keyword argument, trio_token specifying a specific
trio.run loop to re-enter. This is useful in case you have a
“foreign” thread, spawned using some other framework, and still want
to enter Trio, or if you want to use a new system task to call afn,
maybe to avoid the cancellation context of a corresponding
trio.to_thread.run_sync task.

	
trio.from_thread.run_sync(fn: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], RetT [https://docs.python.org/3/library/typing.html#typing.TypeVar]], *args: object [https://docs.python.org/3/library/functions.html#object], trio_token: TrioToken | None [https://docs.python.org/3/library/constants.html#None] = None) → RetT [https://docs.python.org/3/library/typing.html#typing.TypeVar]

	Run the given sync function in the parent Trio thread, blocking until it
is complete.

	Returns:

	Whatever fn(*args) returns.

Returns or raises whatever the given function returns or raises. It
can also raise exceptions of its own:

	Raises:

	
	RunFinishedError – if the corresponding call to trio.run has
 already completed.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if you try calling this from inside the Trio thread,
 which would otherwise cause a deadlock or if no trio_token was
 provided, and we can’t infer one from context.

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if fn is an async function.

Locating a TrioToken: There are two ways to specify which
trio.run loop to reenter:

	Spawn this thread from trio.to_thread.run_sync. Trio will
automatically capture the relevant Trio token and use it when you
want to re-enter Trio.

	Pass a keyword argument, trio_token specifying a specific
trio.run loop to re-enter. This is useful in case you have a
“foreign” thread, spawned using some other framework, and still want
to enter Trio, or if you want to use a new system task to call fn,
maybe to avoid the cancellation context of a corresponding
trio.to_thread.run_sync task.

This will probably be clearer with an example. Here we demonstrate how
to spawn a child thread, and then use a memory channel to send messages between the thread and a Trio task:

import trio

def thread_fn(receive_from_trio, send_to_trio):
 while True:
 # Since we're in a thread, we can't call methods on Trio
 # objects directly -- so we use trio.from_thread to call them.
 try:
 request = trio.from_thread.run(receive_from_trio.receive)
 except trio.EndOfChannel:
 trio.from_thread.run(send_to_trio.aclose)
 return
 else:
 response = request + 1
 trio.from_thread.run(send_to_trio.send, response)

async def main():
 send_to_thread, receive_from_trio = trio.open_memory_channel(0)
 send_to_trio, receive_from_thread = trio.open_memory_channel(0)

 async with trio.open_nursery() as nursery:
 # In a background thread, run:
 # thread_fn(receive_from_trio, send_to_trio)
 nursery.start_soon(
 trio.to_thread.run_sync, thread_fn, receive_from_trio, send_to_trio
)

 # prints "1"
 await send_to_thread.send(0)
 print(await receive_from_thread.receive())

 # prints "2"
 await send_to_thread.send(1)
 print(await receive_from_thread.receive())

 # When we close the channel, it signals the thread to exit.
 await send_to_thread.aclose()

 # When we exit the nursery, it waits for the background thread to
 # exit.

trio.run(main)

Note

The from_thread.run* functions reuse the host task that called
trio.to_thread.run_sync() to run your provided function, as long as you’re
using the default abandon_on_cancel=False so Trio can be sure that the task will remain
around to perform the work. If you pass abandon_on_cancel=True at the outset, or if
you provide a TrioToken when calling back in to Trio, your
functions will be executed in a new system task. Therefore, the
current_task(), current_effective_deadline(), or other
task-tree specific values may differ depending on keyword argument values.

You can also use trio.from_thread.check_cancelled() to check for cancellation from
a thread that was spawned by trio.to_thread.run_sync(). If the call to
run_sync() was cancelled, then
check_cancelled() will raise trio.Cancelled().
It’s like trio.from_thread.run(trio.sleep, 0), but much faster.

	
trio.from_thread.check_cancelled() → None [https://docs.python.org/3/library/constants.html#None]

	Raise trio.Cancelled if the associated Trio task entered a cancelled status.

Only applicable to threads spawned by trio.to_thread.run_sync. Poll to allow
abandon_on_cancel=False threads to raise Cancelled at a suitable
place, or to end abandoned abandon_on_cancel=True threads sooner than they may
otherwise.

	Raises:

	
	Cancelled – If the corresponding call to trio.to_thread.run_sync has had a
 delivery of cancellation attempted against it, regardless of the value of
 abandon_on_cancel supplied as an argument to it.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If this thread is not spawned from trio.to_thread.run_sync.

Note

To be precise, check_cancelled() checks whether the task
running trio.to_thread.run_sync() has ever been cancelled since the last
time it was running a trio.from_thread.run() or trio.from_thread.run_sync()
function. It may raise trio.Cancelled even if a cancellation occurred that was
later hidden by a modification to trio.CancelScope.shield between the cancelled
CancelScope and trio.to_thread.run_sync(). This differs from the
behavior of normal Trio checkpoints, which raise Cancelled only if the
cancellation is still active when the checkpoint executes. The distinction here is
exceedingly unlikely to be relevant to your application, but we mention it
for completeness.

Threads and task-local storage

When working with threads, you can use the same contextvars [https://docs.python.org/3/library/contextvars.html#module-contextvars] we discussed above,
because their values are preserved.

This is done by automatically copying the contextvars [https://docs.python.org/3/library/contextvars.html#module-contextvars] context when you use any of:

	trio.to_thread.run_sync

	trio.from_thread.run

	trio.from_thread.run_sync

That means that the values of the context variables are accessible even in worker
threads, or when sending a function to be run in the main/parent Trio thread using
trio.from_thread.run from one of these worker threads.

But it also means that as the context is not the same but a copy, if you set [https://docs.python.org/3/library/stdtypes.html#set] the
context variable value inside one of these functions that work in threads, the
new value will only be available in that context (that was copied). So, the new value
will be available for that function and other internal/children tasks, but the value
won’t be available in the parent thread.

If you need to modify values that would live in the context variables and you need to
make those modifications from the child threads, you can instead set a mutable object
(e.g. a dictionary) in the context variable of the top level/parent Trio thread.
Then in the children, instead of setting the context variable, you can get the same
object, and modify its values. That way you keep the same object in the context
variable and only mutate it in child threads.

This way, you can modify the object content in child threads and still access the
new content in the parent thread.

Here’s an example:

import contextvars
import time

import trio

request_state = contextvars.ContextVar("request_state")

Blocking function that should be run on a thread
It could be reading or writing files, communicating with a database
with a driver not compatible with async / await, etc.
def work_in_thread(msg):
 # Only use request_state.get() inside the worker thread
 state_value = request_state.get()
 current_user_id = state_value["current_user_id"]
 time.sleep(3) # this would be some blocking call, like reading a file
 print(f"Processed user {current_user_id} with message {msg} in a thread worker")
 # Modify/mutate the state object, without setting the entire
 # contextvar with request_state.set()
 state_value["msg"] = msg

An example "request handler" that does some work itself and also
spawns some helper tasks in threads to execute blocking code.
async def handle_request(current_user_id):
 # Write to task-local storage:
 current_state = {"current_user_id": current_user_id, "msg": ""}
 request_state.set(current_state)

 # Here the current implicit contextvars context will be automatically copied
 # inside the worker thread
 await trio.to_thread.run_sync(work_in_thread, f"Hello {current_user_id}")
 # Extract the value set inside the thread in the same object stored in a contextvar
 new_msg = current_state["msg"]
 print(
 f"New contextvar value from worker thread for user {current_user_id}: {new_msg}"
)

Spawn several "request handlers" simultaneously, to simulate a
busy server handling multiple requests at the same time.
async def main():
 async with trio.open_nursery() as nursery:
 for i in range(3):
 nursery.start_soon(handle_request, i)

trio.run(main)

Running that script will result in the output:

Processed user 2 with message Hello 2 in a thread worker
Processed user 0 with message Hello 0 in a thread worker
Processed user 1 with message Hello 1 in a thread worker
New contextvar value from worker thread for user 2: Hello 2
New contextvar value from worker thread for user 1: Hello 1
New contextvar value from worker thread for user 0: Hello 0

If you are using contextvars or you are using a library that uses them, now you
know how they interact when working with threads in Trio.

But have in mind that in many cases it might be a lot simpler to not use context
variables in your own code and instead pass values in arguments, as it might be more
explicit and might be easier to reason about.

Note

The context is automatically copied instead of using the same parent context because
a single context can’t be used in more than one thread, it’s not supported by
contextvars.

Exceptions and warnings

	
exception trio.Cancelled(*args: object [https://docs.python.org/3/library/functions.html#object], **kwargs: object [https://docs.python.org/3/library/functions.html#object])

	Raised by blocking calls if the surrounding scope has been cancelled.

You should let this exception propagate, to be caught by the relevant
cancel scope. To remind you of this, it inherits from BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]
instead of Exception [https://docs.python.org/3/library/exceptions.html#Exception], just like KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] and
SystemExit [https://docs.python.org/3/library/exceptions.html#SystemExit] do. This means that if you write something like:

try:
 ...
except Exception:
 ...

then this won’t catch a Cancelled exception.

You cannot raise Cancelled yourself. Attempting to do so
will produce a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError]. Use cancel_scope.cancel() instead.

Note

In the US it’s also common to see this word spelled “canceled”, with
only one “l”. This is a recent [https://books.google.com/ngrams/graph?content=canceled%2Ccancelled&year_start=1800&year_end=2000&corpus=5&smoothing=3&direct_url=t1%3B%2Ccanceled%3B%2Cc0%3B.t1%3B%2Ccancelled%3B%2Cc0]
and US-specific [https://books.google.com/ngrams/graph?content=canceled%2Ccancelled&year_start=1800&year_end=2000&corpus=18&smoothing=3&share=&direct_url=t1%3B%2Ccanceled%3B%2Cc0%3B.t1%3B%2Ccancelled%3B%2Cc0]
innovation, and even in the US both forms are still commonly used. So
for consistency with the rest of the world and with “cancellation”
(which always has two “l”s), Trio uses the two “l” spelling
everywhere.

	
exception trio.TooSlowError

	Raised by fail_after() and fail_at() if the timeout
expires.

	
exception trio.WouldBlock

	Raised by X_nowait functions if X would block.

	
exception trio.EndOfChannel

	Raised when trying to receive from a trio.abc.ReceiveChannel
that has no more data to receive.

This is analogous to an “end-of-file” condition, but for channels.

	
exception trio.BusyResourceError

	Raised when a task attempts to use a resource that some other task is
already using, and this would lead to bugs and nonsense.

For example, if two tasks try to send data through the same socket at the
same time, Trio will raise BusyResourceError instead of letting
the data get scrambled.

	
exception trio.ClosedResourceError

	Raised when attempting to use a resource after it has been closed.

Note that “closed” here means that your code closed the resource,
generally by calling a method with a name like close or aclose, or
by exiting a context manager. If a problem arises elsewhere – for example,
because of a network failure, or because a remote peer closed their end of
a connection – then that should be indicated by a different exception
class, like BrokenResourceError or an OSError [https://docs.python.org/3/library/exceptions.html#OSError] subclass.

	
exception trio.BrokenResourceError

	Raised when an attempt to use a resource fails due to external
circumstances.

For example, you might get this if you try to send data on a stream where
the remote side has already closed the connection.

You don’t get this error if you closed the resource – in that case you
get ClosedResourceError.

This exception’s __cause__ attribute will often contain more
information about the underlying error.

	
exception trio.RunFinishedError

	Raised by trio.from_thread.run and similar functions if the
corresponding call to trio.run() has already finished.

	
exception trio.TrioInternalError

	Raised by run() if we encounter a bug in Trio, or (possibly) a
misuse of one of the low-level trio.lowlevel APIs.

This should never happen! If you get this error, please file a bug.

Unfortunately, if you get this error it also means that all bets are off –
Trio doesn’t know what is going on and its normal invariants may be void.
(For example, we might have “lost track” of a task. Or lost track of all
tasks.) Again, though, this shouldn’t happen.

	
exception trio.TrioDeprecationWarning

	Bases: FutureWarning [https://docs.python.org/3/library/exceptions.html#FutureWarning]

Warning emitted if you use deprecated Trio functionality.

As a young project, Trio is currently quite aggressive about deprecating
and/or removing functionality that we realize was a bad idea. If you use
Trio, you should subscribe to issue #1 [https://github.com/python-trio/trio/issues/1] to get information about
upcoming deprecations and other backwards compatibility breaking changes.

Despite the name, this class currently inherits from
FutureWarning [https://docs.python.org/3/library/exceptions.html#FutureWarning], not DeprecationWarning [https://docs.python.org/3/library/exceptions.html#DeprecationWarning], because while
we’re in young-and-aggressive mode we want these warnings to be visible by
default. You can hide them by installing a filter or with the -W
switch: see the warnings [https://docs.python.org/3/library/warnings.html#module-warnings] documentation for details.

I/O in Trio

The abstract Stream API

Trio provides a set of abstract base classes that define a standard
interface for unidirectional and bidirectional byte streams.

Why is this useful? Because it lets you write generic protocol
implementations that can work over arbitrary transports, and easily
create complex transport configurations. Here’s some examples:

	trio.SocketStream wraps a raw socket (like a TCP connection
over the network), and converts it to the standard stream interface.

	trio.SSLStream is a “stream adapter” that can take any
object that implements the trio.abc.Stream interface, and
convert it into an encrypted stream. In Trio the standard way to
speak SSL over the network is to wrap an
SSLStream around a SocketStream.

	If you spawn a subprocess, you can get a
SendStream that lets you write to its stdin, and
a ReceiveStream that lets you read from its
stdout. If for some reason you wanted to speak SSL to a subprocess,
you could use a StapledStream to combine its stdin/stdout
into a single bidirectional Stream, and then wrap
that in an SSLStream:

ssl_context = ssl.create_default_context()
ssl_context.check_hostname = False
s = SSLStream(StapledStream(process.stdin, process.stdout), ssl_context)

	It sometimes happens that you want to connect to an HTTPS server,
but you have to go through a web proxy… and the proxy also uses
HTTPS. So you end up having to do SSL-on-top-of-SSL [https://daniel.haxx.se/blog/2016/11/26/https-proxy-with-curl/]. In
Trio this is trivial – just wrap your first
SSLStream in a second
SSLStream:

Get a raw SocketStream connection to the proxy:
s0 = await open_tcp_stream("proxy", 443)

Set up SSL connection to proxy:
s1 = SSLStream(s0, proxy_ssl_context, server_hostname="proxy")
Request a connection to the website
await s1.send_all(b"CONNECT website:443 / HTTP/1.0\r\n\r\n")
await check_CONNECT_response(s1)

Set up SSL connection to the real website. Notice that s1 is
already an SSLStream object, and here we're wrapping a second
SSLStream object around it.
s2 = SSLStream(s1, website_ssl_context, server_hostname="website")
Make our request
await s2.send_all(b"GET /index.html HTTP/1.0\r\n\r\n")
...

	The trio.testing module provides a set of flexible
in-memory stream object implementations, so if
you have a protocol implementation to test then you can start
two tasks, set up a virtual “socket” connecting them, and then do
things like inject random-but-repeatable delays into the connection.

Abstract base classes

Overview: abstract base classes for I/O

	Abstract base class

	Inherits from…

	Adds these abstract methods…

	And these concrete methods.

	Example implementations

	AsyncResource

	
	aclose()

	__aenter__, __aexit__

	Asynchronous file objects

	SendStream

	AsyncResource

	send_all(),
wait_send_all_might_not_block()

	
	MemorySendStream

	ReceiveStream

	AsyncResource

	receive_some()

	__aiter__, __anext__

	MemoryReceiveStream

	Stream

	SendStream, ReceiveStream

	
	
	SSLStream

	HalfCloseableStream

	Stream

	send_eof()

	
	SocketStream, StapledStream

	Listener

	AsyncResource

	accept()

	
	SocketListener, SSLListener

	SendChannel

	AsyncResource

	send()

	
	MemorySendChannel

	ReceiveChannel

	AsyncResource

	receive()

	__aiter__, __anext__

	MemoryReceiveChannel

	Channel

	SendChannel, ReceiveChannel

	
	
	

	
class trio.abc.AsyncResource

	A standard interface for resources that needs to be cleaned up, and
where that cleanup may require blocking operations.

This class distinguishes between “graceful” closes, which may perform I/O
and thus block, and a “forceful” close, which cannot. For example, cleanly
shutting down a TLS-encrypted connection requires sending a “goodbye”
message; but if a peer has become non-responsive, then sending this
message might block forever, so we may want to just drop the connection
instead. Therefore the aclose() method is unusual in that it
should always close the connection (or at least make its best attempt)
even if it fails; failure indicates a failure to achieve grace, not a
failure to close the connection.

Objects that implement this interface can be used as async context
managers, i.e., you can write:

async with create_resource() as some_async_resource:
 ...

Entering the context manager is synchronous (not a checkpoint); exiting it
calls aclose(). The default implementations of
__aenter__ and __aexit__ should be adequate for all subclasses.

	
abstractmethod await aclose() → None [https://docs.python.org/3/library/constants.html#None]

	Close this resource, possibly blocking.

IMPORTANT: This method may block in order to perform a “graceful”
shutdown. But, if this fails, then it still must close any
underlying resources before returning. An error from this method
indicates a failure to achieve grace, not a failure to close the
connection.

For example, suppose we call aclose() on a TLS-encrypted
connection. This requires sending a “goodbye” message; but if the peer
has become non-responsive, then our attempt to send this message might
block forever, and eventually time out and be cancelled. In this case
the aclose() method on SSLStream will
immediately close the underlying transport stream using
trio.aclose_forcefully() before raising Cancelled.

If the resource is already closed, then this method should silently
succeed.

Once this method completes, any other pending or future operations on
this resource should generally raise ClosedResourceError,
unless there’s a good reason to do otherwise.

See also: trio.aclose_forcefully().

	
await trio.aclose_forcefully(resource: AsyncResource) → None [https://docs.python.org/3/library/constants.html#None]

	Close an async resource or async generator immediately, without
blocking to do any graceful cleanup.

AsyncResource objects guarantee that if their
aclose() method is cancelled, then they will
still close the resource (albeit in a potentially ungraceful
fashion). aclose_forcefully() is a convenience function that
exploits this behavior to let you force a resource to be closed without
blocking: it works by calling await resource.aclose() and then
cancelling it immediately.

Most users won’t need this, but it may be useful on cleanup paths where
you can’t afford to block, or if you want to close a resource and don’t
care about handling it gracefully. For example, if
SSLStream encounters an error and cannot perform its
own graceful close, then there’s no point in waiting to gracefully shut
down the underlying transport either, so it calls await
aclose_forcefully(self.transport_stream).

Note that this function is async, and that it acts as a checkpoint, but
unlike most async functions it cannot block indefinitely (at least,
assuming the underlying resource object is correctly implemented).

	
class trio.abc.SendStream

	Bases: AsyncResource

A standard interface for sending data on a byte stream.

The underlying stream may be unidirectional, or bidirectional. If it’s
bidirectional, then you probably want to also implement
ReceiveStream, which makes your object a Stream.

SendStream objects also implement the AsyncResource
interface, so they can be closed by calling aclose()
or using an async with block.

If you want to send Python objects rather than raw bytes, see
SendChannel.

	
abstractmethod await send_all(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] | memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview]) → None [https://docs.python.org/3/library/constants.html#None]

	Sends the given data through the stream, blocking if necessary.

	Parameters:

	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray], or memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview]) – The data to send.

	Raises:

	
	trio.BusyResourceError – if another task is already executing a
 send_all(), wait_send_all_might_not_block(), or
 HalfCloseableStream.send_eof() on this stream.

	trio.BrokenResourceError – if something has gone wrong, and the stream
 is broken.

	trio.ClosedResourceError – if you previously closed this stream
 object, or if another task closes this stream object while
 send_all() is running.

Most low-level operations in Trio provide a guarantee: if they raise
trio.Cancelled, this means that they had no effect, so the
system remains in a known state. This is not true for
send_all(). If this operation raises trio.Cancelled (or
any other exception for that matter), then it may have sent some, all,
or none of the requested data, and there is no way to know which.

	
abstractmethod await wait_send_all_might_not_block() → None [https://docs.python.org/3/library/constants.html#None]

	Block until it’s possible that send_all() might not block.

This method may return early: it’s possible that after it returns,
send_all() will still block. (In the worst case, if no better
implementation is available, then it might always return immediately
without blocking. It’s nice to do better than that when possible,
though.)

This method must not return late: if it’s possible for
send_all() to complete without blocking, then it must
return. When implementing it, err on the side of returning early.

	Raises:

	
	trio.BusyResourceError – if another task is already executing a
 send_all(), wait_send_all_might_not_block(), or
 HalfCloseableStream.send_eof() on this stream.

	trio.BrokenResourceError – if something has gone wrong, and the stream
 is broken.

	trio.ClosedResourceError – if you previously closed this stream
 object, or if another task closes this stream object while
 wait_send_all_might_not_block() is running.

Note

This method is intended to aid in implementing protocols that want
to delay choosing which data to send until the last moment. E.g.,
suppose you’re working on an implementation of a remote display server
like VNC [https://en.wikipedia.org/wiki/Virtual_Network_Computing], and
the network connection is currently backed up so that if you call
send_all() now then it will sit for 0.5 seconds before actually
sending anything. In this case it doesn’t make sense to take a
screenshot, then wait 0.5 seconds, and then send it, because the
screen will keep changing while you wait; it’s better to wait 0.5
seconds, then take the screenshot, and then send it, because this
way the data you deliver will be more
up-to-date. Using wait_send_all_might_not_block() makes it
possible to implement the better strategy.

If you use this method, you might also want to read up on
TCP_NOTSENT_LOWAT.

Further reading:

	Prioritization Only Works When There’s Pending Data to Prioritize [https://insouciant.org/tech/prioritization-only-works-when-theres-pending-data-to-prioritize/]

	WWDC 2015: Your App and Next Generation Networks: slides [http://devstreaming.apple.com/videos/wwdc/2015/719ui2k57m/719/719_your_app_and_next_generation_networks.pdf?dl=1],
video and transcript [https://developer.apple.com/videos/play/wwdc2015/719/]

	
class trio.abc.ReceiveStream

	Bases: AsyncResource

A standard interface for receiving data on a byte stream.

The underlying stream may be unidirectional, or bidirectional. If it’s
bidirectional, then you probably want to also implement
SendStream, which makes your object a Stream.

ReceiveStream objects also implement the AsyncResource
interface, so they can be closed by calling aclose()
or using an async with block.

If you want to receive Python objects rather than raw bytes, see
ReceiveChannel.

ReceiveStream objects can be used in async for loops. Each iteration
will produce an arbitrary sized chunk of bytes, like calling
receive_some with no arguments. Every chunk will contain at least one
byte, and the loop automatically exits when reaching end-of-file.

	
abstractmethod await receive_some(max_bytes: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	Wait until there is data available on this stream, and then return
some of it.

A return value of b"" (an empty bytestring) indicates that the
stream has reached end-of-file. Implementations should be careful that
they return b"" if, and only if, the stream has reached
end-of-file!

	Parameters:

	max_bytes (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of bytes to return. Must be
greater than zero. Optional; if omitted, then the stream object
is free to pick a reasonable default.

	Returns:

	The data received.

	Return type:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	Raises:

	
	trio.BusyResourceError – if two tasks attempt to call
 receive_some() on the same stream at the same time.

	trio.BrokenResourceError – if something has gone wrong, and the stream
 is broken.

	trio.ClosedResourceError – if you previously closed this stream
 object, or if another task closes this stream object while
 receive_some() is running.

	
class trio.abc.Stream

	Bases: SendStream, ReceiveStream

A standard interface for interacting with bidirectional byte streams.

A Stream is an object that implements both the
SendStream and ReceiveStream interfaces.

If implementing this interface, you should consider whether you can go one
step further and implement HalfCloseableStream.

	
class trio.abc.HalfCloseableStream

	Bases: Stream

This interface extends Stream to also allow closing the send
part of the stream without closing the receive part.

	
abstractmethod await send_eof() → None [https://docs.python.org/3/library/constants.html#None]

	Send an end-of-file indication on this stream, if possible.

The difference between send_eof() and
aclose() is that send_eof() is a
unidirectional end-of-file indication. After you call this method,
you shouldn’t try sending any more data on this stream, and your
remote peer should receive an end-of-file indication (eventually,
after receiving all the data you sent before that). But, they may
continue to send data to you, and you can continue to receive it by
calling receive_some(). You can think of it as
calling aclose() on just the
SendStream “half” of the stream object (and in fact that’s
literally how trio.StapledStream implements it).

Examples:

	On a socket, this corresponds to shutdown(..., SHUT_WR) (man
page [https://linux.die.net/man/2/shutdown]).

	The SSH protocol provides the ability to multiplex bidirectional
“channels” on top of a single encrypted connection. A Trio
implementation of SSH could expose these channels as
HalfCloseableStream objects, and calling send_eof()
would send an SSH_MSG_CHANNEL_EOF request (see RFC 4254 §5.3 [https://tools.ietf.org/html/rfc4254#section-5.3]).

	On an SSL/TLS-encrypted connection, the protocol doesn’t provide any
way to do a unidirectional shutdown without closing the connection
entirely, so SSLStream implements
Stream, not HalfCloseableStream.

If an EOF has already been sent, then this method should silently
succeed.

	Raises:

	
	trio.BusyResourceError – if another task is already executing a
 send_all(),
 wait_send_all_might_not_block(), or
 send_eof() on this stream.

	trio.BrokenResourceError – if something has gone wrong, and the stream
 is broken.

	trio.ClosedResourceError – if you previously closed this stream
 object, or if another task closes this stream object while
 send_eof() is running.

	
class trio.abc.Listener

	Bases: AsyncResource, Generic [https://docs.python.org/3/library/typing.html#typing.Generic][T_resource [https://docs.python.org/3/library/typing.html#typing.TypeVar]]

A standard interface for listening for incoming connections.

Listener objects also implement the AsyncResource
interface, so they can be closed by calling aclose()
or using an async with block.

	
abstractmethod await accept() → T_resource [https://docs.python.org/3/library/typing.html#typing.TypeVar]

	Wait until an incoming connection arrives, and then return it.

	Returns:

	An object representing the incoming connection. In
practice this is generally some kind of Stream,
but in principle you could also define a Listener that
returned, say, channel objects.

	Return type:

	AsyncResource

	Raises:

	
	trio.BusyResourceError – if two tasks attempt to call
 accept() on the same listener at the same time.

	trio.ClosedResourceError – if you previously closed this listener
 object, or if another task closes this listener object while
 accept() is running.

Listeners don’t generally raise BrokenResourceError,
because for listeners there is no general condition of “the
network/remote peer broke the connection” that can be handled in a
generic way, like there is for streams. Other errors can occur and
be raised from accept() – for example, if you run out of file
descriptors then you might get an OSError [https://docs.python.org/3/library/exceptions.html#OSError] with its errno set
to EMFILE.

	
class trio.abc.SendChannel

	Bases: AsyncResource, Generic [https://docs.python.org/3/library/typing.html#typing.Generic][SendType [https://docs.python.org/3/library/typing.html#typing.TypeVar]]

A standard interface for sending Python objects to some receiver.

SendChannel objects also implement the AsyncResource interface, so
they can be closed by calling aclose or using an async
with block.

If you want to send raw bytes rather than Python objects, see
SendStream.

	
abstractmethod await send(value: SendType [https://docs.python.org/3/library/typing.html#typing.TypeVar]) → None [https://docs.python.org/3/library/constants.html#None]

	Attempt to send an object through the channel, blocking if necessary.

	Parameters:

	value (object [https://docs.python.org/3/library/functions.html#object]) – The object to send.

	Raises:

	
	trio.BrokenResourceError – if something has gone wrong, and the
 channel is broken. For example, you may get this if the receiver
 has already been closed.

	trio.ClosedResourceError – if you previously closed this
 SendChannel object, or if another task closes it while
 send() is running.

	trio.BusyResourceError – some channels allow multiple tasks to call
 send at the same time, but others don’t. If you try to call
 send simultaneously from multiple tasks on a channel that
 doesn’t support it, then you can get BusyResourceError.

	
class trio.abc.ReceiveChannel

	Bases: AsyncResource, Generic [https://docs.python.org/3/library/typing.html#typing.Generic][ReceiveType [https://docs.python.org/3/library/typing.html#typing.TypeVar]]

A standard interface for receiving Python objects from some sender.

You can iterate over a ReceiveChannel using an async for
loop:

async for value in receive_channel:
 ...

This is equivalent to calling receive() repeatedly. The loop exits
without error when receive raises EndOfChannel.

ReceiveChannel objects also implement the AsyncResource interface, so
they can be closed by calling aclose or using an async
with block.

If you want to receive raw bytes rather than Python objects, see
ReceiveStream.

	
abstractmethod await receive() → ReceiveType [https://docs.python.org/3/library/typing.html#typing.TypeVar]

	Attempt to receive an incoming object, blocking if necessary.

	Returns:

	Whatever object was received.

	Return type:

	object [https://docs.python.org/3/library/functions.html#object]

	Raises:

	
	trio.EndOfChannel – if the sender has been closed cleanly, and no
 more objects are coming. This is not an error condition.

	trio.ClosedResourceError – if you previously closed this
 ReceiveChannel object.

	trio.BrokenResourceError – if something has gone wrong, and the
 channel is broken.

	trio.BusyResourceError – some channels allow multiple tasks to call
 receive at the same time, but others don’t. If you try to call
 receive simultaneously from multiple tasks on a channel that
 doesn’t support it, then you can get BusyResourceError.

	
class trio.abc.Channel

	Bases: SendChannel[T [https://docs.python.org/3/library/typing.html#typing.TypeVar]], ReceiveChannel[T [https://docs.python.org/3/library/typing.html#typing.TypeVar]]

A standard interface for interacting with bidirectional channels.

A Channel is an object that implements both the SendChannel and
ReceiveChannel interfaces, so you can both send and receive objects.

Generic stream tools

Trio currently provides a generic helper for writing servers that
listen for connections using one or more
Listeners, and a generic utility class for working
with streams. And if you want to test code that’s written against the
streams interface, you should also check out Streams in
trio.testing.

	
await trio.serve_listeners(handler: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[StreamT [https://docs.python.org/3/library/typing.html#typing.TypeVar]], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][object [https://docs.python.org/3/library/functions.html#object]]], listeners: list [https://docs.python.org/3/library/stdtypes.html#list][ListenerT [https://docs.python.org/3/library/typing.html#typing.TypeVar]], *, handler_nursery: Nursery | None [https://docs.python.org/3/library/constants.html#None] = None, task_status: TaskStatus[list [https://docs.python.org/3/library/stdtypes.html#list][ListenerT [https://docs.python.org/3/library/typing.html#typing.TypeVar]]] = TASK_STATUS_IGNORED) → NoReturn [https://docs.python.org/3/library/typing.html#typing.NoReturn]

	Listen for incoming connections on listeners, and for each one
start a task running handler(stream).

Warning

If handler raises an exception, then this function doesn’t do
anything special to catch it – so by default the exception will
propagate out and crash your server. If you don’t want this, then catch
exceptions inside your handler, or use a handler_nursery object
that responds to exceptions in some other way.

	Parameters:

	
	handler – An async callable, that will be invoked like
handler_nursery.start_soon(handler, stream) for each incoming
connection.

	listeners – A list of Listener objects.
serve_listeners() takes responsibility for closing them.

	handler_nursery – The nursery used to start handlers, or any object with
a start_soon method. If None (the default), then
serve_listeners() will create a new nursery internally and use
that.

	task_status – This function can be used with nursery.start, which
will return listeners.

	Returns:

	This function never returns unless cancelled.

Resource handling:

If handler neglects to close the stream, then it will be closed
using trio.aclose_forcefully().

Error handling:

Most errors coming from accept() are allowed to
propagate out (crashing the server in the process). However, some errors –
those which indicate that the server is temporarily overloaded – are
handled specially. These are OSError [https://docs.python.org/3/library/exceptions.html#OSError]s with one of the following
errnos:

	EMFILE: process is out of file descriptors

	ENFILE: system is out of file descriptors

	ENOBUFS, ENOMEM: the kernel hit some sort of memory limitation
when trying to create a socket object

When serve_listeners() gets one of these errors, then it:

	Logs the error to the standard library logger trio.serve_listeners
(level = ERROR, with exception information included). By default this
causes it to be printed to stderr.

	Waits 100 ms before calling accept again, in hopes that the
system will recover.

	
class trio.StapledStream(send_stream: SendStreamT [https://docs.python.org/3/library/typing.html#typing.TypeVar], receive_stream: ReceiveStreamT [https://docs.python.org/3/library/typing.html#typing.TypeVar])

	Bases: HalfCloseableStream, Generic [https://docs.python.org/3/library/typing.html#typing.Generic][SendStreamT [https://docs.python.org/3/library/typing.html#typing.TypeVar], ReceiveStreamT [https://docs.python.org/3/library/typing.html#typing.TypeVar]]

This class staples [https://en.wikipedia.org/wiki/Staple_(fastener)]
together two unidirectional streams to make single bidirectional stream.

	Parameters:

	
	send_stream (SendStream) – The stream to use for sending.

	receive_stream (ReceiveStream) – The stream to use for
receiving.

Example

A silly way to make a stream that echoes back whatever you write to
it:

left, right = trio.testing.memory_stream_pair()
echo_stream = StapledStream(SocketStream(left), SocketStream(right))
await echo_stream.send_all(b"x")
assert await echo_stream.receive_some() == b"x"

StapledStream objects implement the methods in the
HalfCloseableStream interface. They also have two
additional public attributes:

	
send_stream

	The underlying SendStream. send_all() and
wait_send_all_might_not_block() are delegated to this object.

	
receive_stream

	The underlying ReceiveStream. receive_some()
is delegated to this object.

	
await aclose() → None [https://docs.python.org/3/library/constants.html#None]

	Calls aclose on both underlying streams.

	
await receive_some(max_bytes: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Calls self.receive_stream.receive_some.

	
await send_all(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] | memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview]) → None [https://docs.python.org/3/library/constants.html#None]

	Calls self.send_stream.send_all.

	
await send_eof() → None [https://docs.python.org/3/library/constants.html#None]

	Shuts down the send side of the stream.

If self.send_stream.send_eof() exists,
then this calls it. Otherwise, this calls
self.send_stream.aclose().

	
await wait_send_all_might_not_block() → None [https://docs.python.org/3/library/constants.html#None]

	Calls self.send_stream.wait_send_all_might_not_block.

Sockets and networking

The high-level network interface is built on top of our stream
abstraction.

	
await trio.open_tcp_stream(host: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes], port: int [https://docs.python.org/3/library/functions.html#int], *, happy_eyeballs_delay: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = 0.25, local_address: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → SocketStream

	Connect to the given host and port over TCP.

If the given host has multiple IP addresses associated with it, then
we have a problem: which one do we use?

One approach would be to attempt to connect to the first one, and then if
that fails, attempt to connect to the second one … until we’ve tried all
of them. But the problem with this is that if the first IP address is
unreachable (for example, because it’s an IPv6 address and our network
discards IPv6 packets), then we might end up waiting tens of seconds for
the first connection attempt to timeout before we try the second address.

Another approach would be to attempt to connect to all of the addresses at
the same time, in parallel, and then use whichever connection succeeds
first, abandoning the others. This would be fast, but create a lot of
unnecessary load on the network and the remote server.

This function strikes a balance between these two extremes: it works its
way through the available addresses one at a time, like the first
approach; but, if happy_eyeballs_delay seconds have passed and it’s
still waiting for an attempt to succeed or fail, then it gets impatient
and starts the next connection attempt in parallel. As soon as any one
connection attempt succeeds, all the other attempts are cancelled. This
avoids unnecessary load because most connections will succeed after just
one or two attempts, but if one of the addresses is unreachable then it
doesn’t slow us down too much.

This is known as a “happy eyeballs” algorithm, and our particular variant
is modelled after how Chrome connects to webservers; see RFC 6555 [https://tools.ietf.org/html/rfc6555] for more details.

	Parameters:

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The host to connect to. Can be an IPv4 address,
IPv6 address, or a hostname.

	port (int [https://docs.python.org/3/library/functions.html#int]) – The port to connect to.

	happy_eyeballs_delay (float [https://docs.python.org/3/library/functions.html#float] or None) – How many seconds to wait for each
connection attempt to succeed or fail before getting impatient and
starting another one in parallel. Set to None [https://docs.python.org/3/library/constants.html#None] if you want
to limit to only one connection attempt at a time (like
socket.create_connection() [https://docs.python.org/3/library/socket.html#socket.create_connection]). Default: 0.25 (250 ms).

	local_address (None or str [https://docs.python.org/3/library/stdtypes.html#str]) – The local IP address or hostname to use as
the source for outgoing connections. If None, we let the OS pick
the source IP.

This is useful in some exotic networking configurations where your
host has multiple IP addresses, and you want to force the use of a
specific one.

Note that if you pass an IPv4 local_address, then you won’t be
able to connect to IPv6 hosts, and vice-versa. If you want to take
advantage of this to force the use of IPv4 or IPv6 without
specifying an exact source address, you can use the IPv4 wildcard
address local_address="0.0.0.0", or the IPv6 wildcard address
local_address="::".

	Returns:

	a Stream connected to the given server.

	Return type:

	SocketStream

	Raises:

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – if the connection fails.

See also

open_ssl_over_tcp_stream

	
await trio.serve_tcp(handler: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[SocketStream], Awaitable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Awaitable][object [https://docs.python.org/3/library/functions.html#object]]], port: int [https://docs.python.org/3/library/functions.html#int], *, host: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | None [https://docs.python.org/3/library/constants.html#None] = None, backlog: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, handler_nursery: Nursery | None [https://docs.python.org/3/library/constants.html#None] = None, task_status: TaskStatus[list [https://docs.python.org/3/library/stdtypes.html#list][trio.SocketListener]] = TASK_STATUS_IGNORED) → None [https://docs.python.org/3/library/constants.html#None]

	Listen for incoming TCP connections, and for each one start a task
running handler(stream).

This is a thin convenience wrapper around open_tcp_listeners() and
serve_listeners() – see them for full details.

Warning

If handler raises an exception, then this function doesn’t do
anything special to catch it – so by default the exception will
propagate out and crash your server. If you don’t want this, then catch
exceptions inside your handler, or use a handler_nursery object
that responds to exceptions in some other way.

When used with nursery.start you get back the newly opened listeners.
So, for example, if you want to start a server in your test suite and then
connect to it to check that it’s working properly, you can use something
like:

from trio import SocketListener, SocketStream
from trio.testing import open_stream_to_socket_listener

async with trio.open_nursery() as nursery:
 listeners: list[SocketListener] = await nursery.start(serve_tcp, handler, 0)
 client_stream: SocketStream = await open_stream_to_socket_listener(listeners[0])

 # Then send and receive data on 'client_stream', for example:
 await client_stream.send_all(b"GET / HTTP/1.0\r\n\r\n")

This avoids several common pitfalls:

	It lets the kernel pick a random open port, so your test suite doesn’t
depend on any particular port being open.

	It waits for the server to be accepting connections on that port before
start returns, so there’s no race condition where the incoming
connection arrives before the server is ready.

	It uses the Listener object to find out which port was picked, so it
can connect to the right place.

	Parameters:

	
	handler – The handler to start for each incoming connection. Passed to
serve_listeners().

	port – The port to listen on. Use 0 to let the kernel pick an open port.
Passed to open_tcp_listeners().

	host (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], or None) – The host interface to listen on; use
None to bind to the wildcard address. Passed to
open_tcp_listeners().

	backlog – The listen backlog, or None to have a good default picked.
Passed to open_tcp_listeners().

	handler_nursery – The nursery to start handlers in, or None to use an
internal nursery. Passed to serve_listeners().

	task_status – This function can be used with nursery.start.

	Returns:

	This function only returns when cancelled.

	
await trio.open_ssl_over_tcp_stream(host: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes], port: int [https://docs.python.org/3/library/functions.html#int], *, https_compatible: bool [https://docs.python.org/3/library/functions.html#bool] = False, ssl_context: SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] | None [https://docs.python.org/3/library/constants.html#None] = None, happy_eyeballs_delay: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = 0.25) → SSLStream[SocketStream]

	Make a TLS-encrypted Connection to the given host and port over TCP.

This is a convenience wrapper that calls open_tcp_stream() and
wraps the result in an SSLStream.

This function does not perform the TLS handshake; you can do it
manually by calling do_handshake(), or else
it will be performed automatically the first time you send or receive
data.

	Parameters:

	
	host (bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or str [https://docs.python.org/3/library/stdtypes.html#str]) – The host to connect to. We require the server
to have a TLS certificate valid for this hostname.

	port (int [https://docs.python.org/3/library/functions.html#int]) – The port to connect to.

	https_compatible (bool [https://docs.python.org/3/library/functions.html#bool]) – Set this to True if you’re connecting to a web
server. See SSLStream for details. Default:
False.

	ssl_context (SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] or None) – The SSL context to
use. If None (the default), ssl.create_default_context() [https://docs.python.org/3/library/ssl.html#ssl.create_default_context]
will be called to create a context.

	happy_eyeballs_delay (float [https://docs.python.org/3/library/functions.html#float]) – See open_tcp_stream().

	Returns:

	the encrypted connection to the server.

	Return type:

	trio.SSLStream

	
await trio.serve_ssl_over_tcp(handler: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[SSLStream[SocketStream]], Awaitable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Awaitable][object [https://docs.python.org/3/library/functions.html#object]]], port: int [https://docs.python.org/3/library/functions.html#int], ssl_context: SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext], *, host: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | None [https://docs.python.org/3/library/constants.html#None] = None, https_compatible: bool [https://docs.python.org/3/library/functions.html#bool] = False, backlog: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, handler_nursery: Nursery | None [https://docs.python.org/3/library/constants.html#None] = None, task_status: TaskStatus[list [https://docs.python.org/3/library/stdtypes.html#list][trio.SSLListener[trio.SocketStream]]] = TASK_STATUS_IGNORED) → NoReturn [https://docs.python.org/3/library/typing.html#typing.NoReturn]

	Listen for incoming TCP connections, and for each one start a task
running handler(stream).

This is a thin convenience wrapper around
open_ssl_over_tcp_listeners() and serve_listeners() – see them
for full details.

Warning

If handler raises an exception, then this function doesn’t do
anything special to catch it – so by default the exception will
propagate out and crash your server. If you don’t want this, then catch
exceptions inside your handler, or use a handler_nursery object
that responds to exceptions in some other way.

When used with nursery.start you get back the newly opened listeners.
See the documentation for serve_tcp() for an example where this is
useful.

	Parameters:

	
	handler – The handler to start for each incoming connection. Passed to
serve_listeners().

	port (int [https://docs.python.org/3/library/functions.html#int]) – The port to listen on. Use 0 to let the kernel pick
an open port. Ultimately passed to open_tcp_listeners().

	ssl_context (SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]) – The SSL context to use for all incoming
connections. Passed to open_ssl_over_tcp_listeners().

	host (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], or None) – The address to bind to; use None to bind
to the wildcard address. Ultimately passed to
open_tcp_listeners().

	https_compatible (bool [https://docs.python.org/3/library/functions.html#bool]) – Set this to True if you want to use
“HTTPS-style” TLS. See SSLStream for details.

	backlog (int [https://docs.python.org/3/library/functions.html#int] or None) – See SSLStream for details.

	handler_nursery – The nursery to start handlers in, or None to use an
internal nursery. Passed to serve_listeners().

	task_status – This function can be used with nursery.start.

	Returns:

	This function only returns when cancelled.

	
await trio.open_unix_socket(filename: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike][str [https://docs.python.org/3/library/stdtypes.html#str]] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]) → SocketStream

	Opens a connection to the specified
Unix domain socket [https://en.wikipedia.org/wiki/Unix_domain_socket].

You must have read/write permission on the specified file to connect.

	Parameters:

	filename (str [https://docs.python.org/3/library/stdtypes.html#str] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The filename to open the connection to.

	Returns:

	a Stream connected to the given file.

	Return type:

	SocketStream

	Raises:

	
	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – If the socket file could not be connected to.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If AF_UNIX sockets are not supported.

	
class trio.SocketStream(socket: SocketType)

	Bases: HalfCloseableStream

An implementation of the trio.abc.HalfCloseableStream
interface based on a raw network socket.

	Parameters:

	socket – The Trio socket object to wrap. Must have type SOCK_STREAM,
and be connected.

By default for TCP sockets, SocketStream enables TCP_NODELAY,
and (on platforms where it’s supported) enables TCP_NOTSENT_LOWAT with
a reasonable buffer size (currently 16 KiB) – see issue #72 [https://github.com/python-trio/trio/issues/72] for discussion. You can
of course override these defaults by calling setsockopt().

Once a SocketStream object is constructed, it implements the full
trio.abc.HalfCloseableStream interface. In addition, it provides
a few extra features:

	
socket

	The Trio socket object that this stream wraps.

	
await aclose() → None [https://docs.python.org/3/library/constants.html#None]

	

	
getsockopt(level: int [https://docs.python.org/3/library/functions.html#int], option: int [https://docs.python.org/3/library/functions.html#int], buffersize: int [https://docs.python.org/3/library/functions.html#int] = 0) → int [https://docs.python.org/3/library/functions.html#int] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Check the current value of an option on the underlying socket.

See socket.socket.getsockopt() [https://docs.python.org/3/library/socket.html#socket.socket.getsockopt] for details.

	
await receive_some(max_bytes: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	

	
await send_all(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] | memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
await send_eof() → None [https://docs.python.org/3/library/constants.html#None]

	

	
setsockopt(level: int [https://docs.python.org/3/library/functions.html#int], option: int [https://docs.python.org/3/library/functions.html#int], value: int [https://docs.python.org/3/library/functions.html#int] | Buffer | None [https://docs.python.org/3/library/constants.html#None], length: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Set an option on the underlying socket.

See socket.socket.setsockopt() [https://docs.python.org/3/library/socket.html#socket.socket.setsockopt] for details.

	
await wait_send_all_might_not_block() → None [https://docs.python.org/3/library/constants.html#None]

	

	
class trio.SocketListener(socket: SocketType)

	Bases: Listener[SocketStream]

A Listener that uses a listening socket to accept
incoming connections as SocketStream objects.

	Parameters:

	socket – The Trio socket object to wrap. Must have type SOCK_STREAM,
and be listening.

Note that the SocketListener “takes ownership” of the given
socket; closing the SocketListener will also close the socket.

	
socket

	The Trio socket object that this stream wraps.

	
await accept() → SocketStream

	Accept an incoming connection.

	Returns:

	SocketStream

	Raises:

	
	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – if the underlying call to accept raises an unexpected
 error.

	ClosedResourceError – if you already closed the socket.

This method handles routine errors like ECONNABORTED, but passes
other errors on to its caller. In particular, it does not make any
special effort to handle resource exhaustion errors like EMFILE,
ENFILE, ENOBUFS, ENOMEM.

	
await aclose() → None [https://docs.python.org/3/library/constants.html#None]

	Close this listener and its underlying socket.

	
await trio.open_tcp_listeners(port: int [https://docs.python.org/3/library/functions.html#int], *, host: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | None [https://docs.python.org/3/library/constants.html#None] = None, backlog: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → list [https://docs.python.org/3/library/stdtypes.html#list][trio.SocketListener]

	Create SocketListener objects to listen for TCP connections.

	Parameters:

	
	port (int [https://docs.python.org/3/library/functions.html#int]) – The port to listen on.

If you use 0 as your port, then the kernel will automatically pick
an arbitrary open port. But be careful: if you use this feature when
binding to multiple IP addresses, then each IP address will get its
own random port, and the returned listeners will probably be
listening on different ports. In particular, this will happen if you
use host=None – which is the default – because in this case
open_tcp_listeners() will bind to both the IPv4 wildcard
address (0.0.0.0) and also the IPv6 wildcard address (::).

	host (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], or None) – The local interface to bind to. This is
passed to getaddrinfo() with the AI_PASSIVE flag
set.

If you want to bind to the wildcard address on both IPv4 and IPv6,
in order to accept connections on all available interfaces, then
pass None. This is the default.

If you have a specific interface you want to bind to, pass its IP
address or hostname here. If a hostname resolves to multiple IP
addresses, this function will open one listener on each of them.

If you want to use only IPv4, or only IPv6, but want to accept on
all interfaces, pass the family-specific wildcard address:
"0.0.0.0" for IPv4-only and "::" for IPv6-only.

	backlog (int [https://docs.python.org/3/library/functions.html#int] or None) – The listen backlog to use. If you leave this as
None then Trio will pick a good default. (Currently: whatever
your system has configured as the maximum backlog.)

	Returns:

	list of SocketListener

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] –

	
await trio.open_ssl_over_tcp_listeners(port: int [https://docs.python.org/3/library/functions.html#int], ssl_context: SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext], *, host: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | None [https://docs.python.org/3/library/constants.html#None] = None, https_compatible: bool [https://docs.python.org/3/library/functions.html#bool] = False, backlog: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → list [https://docs.python.org/3/library/stdtypes.html#list][trio.SSLListener[trio.SocketStream]]

	Start listening for SSL/TLS-encrypted TCP connections to the given port.

	Parameters:

	
	port (int [https://docs.python.org/3/library/functions.html#int]) – The port to listen on. See open_tcp_listeners().

	ssl_context (SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]) – The SSL context to use for all incoming
connections.

	host (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], or None) – The address to bind to; use None to bind
to the wildcard address. See open_tcp_listeners().

	https_compatible (bool [https://docs.python.org/3/library/functions.html#bool]) – See SSLStream for details.

	backlog (int [https://docs.python.org/3/library/functions.html#int] or None) – See open_tcp_listeners() for details.

SSL / TLS support

Trio provides SSL/TLS support based on the standard library ssl [https://docs.python.org/3/library/ssl.html#module-ssl]
module. Trio’s SSLStream and SSLListener take their
configuration from a ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext], which you can create
using ssl.create_default_context() [https://docs.python.org/3/library/ssl.html#ssl.create_default_context] and customize using the
other constants and functions in the ssl [https://docs.python.org/3/library/ssl.html#module-ssl] module.

Warning

Avoid instantiating ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] directly.
A newly constructed SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] has less secure
defaults than one returned by ssl.create_default_context() [https://docs.python.org/3/library/ssl.html#ssl.create_default_context].

Instead of using ssl.SSLContext.wrap_socket() [https://docs.python.org/3/library/ssl.html#ssl.SSLContext.wrap_socket], you
create a SSLStream:

	
class trio.SSLStream(transport_stream: T_Stream [https://docs.python.org/3/library/typing.html#typing.TypeVar], ssl_context: SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext], *, server_hostname: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | None [https://docs.python.org/3/library/constants.html#None] = None, server_side: bool [https://docs.python.org/3/library/functions.html#bool] = False, https_compatible: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Bases: Stream, Generic [https://docs.python.org/3/library/typing.html#typing.Generic][T_Stream [https://docs.python.org/3/library/typing.html#typing.TypeVar]]

Encrypted communication using SSL/TLS.

SSLStream wraps an arbitrary Stream, and
allows you to perform encrypted communication over it using the usual
Stream interface. You pass regular data to
send_all(), then it encrypts it and sends the encrypted data on the
underlying Stream; receive_some() takes encrypted
data out of the underlying Stream and decrypts it
before returning it.

You should read the standard library’s ssl [https://docs.python.org/3/library/ssl.html#module-ssl] documentation carefully
before attempting to use this class, and probably other general
documentation on SSL/TLS as well. SSL/TLS is subtle and quick to
anger. Really. I’m not kidding.

	Parameters:

	
	transport_stream (Stream) – The stream used to transport
encrypted data. Required.

	ssl_context (SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]) – The SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] used for
this connection. Required. Usually created by calling
ssl.create_default_context() [https://docs.python.org/3/library/ssl.html#ssl.create_default_context].

	server_hostname (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], or None) – The name of the server being
connected to. Used for SNI [https://en.wikipedia.org/wiki/Server_Name_Indication] and for
validating the server’s certificate (if hostname checking is
enabled). This is effectively mandatory for clients, and actually
mandatory if ssl_context.check_hostname is True.

	server_side (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether this stream is acting as a client or
server. Defaults to False, i.e. client mode.

	https_compatible (bool [https://docs.python.org/3/library/functions.html#bool]) – There are two versions of SSL/TLS commonly
encountered in the wild: the standard version, and the version used
for HTTPS (HTTP-over-SSL/TLS).

Standard-compliant SSL/TLS implementations always send a
cryptographically signed close_notify message before closing the
connection. This is important because if the underlying transport
were simply closed, then there wouldn’t be any way for the other
side to know whether the connection was intentionally closed by the
peer that they negotiated a cryptographic connection to, or by some
man-in-the-middle [https://en.wikipedia.org/wiki/Man-in-the-middle_attack] attacker
who can’t manipulate the cryptographic stream, but can manipulate
the transport layer (a so-called “truncation attack”).

However, this part of the standard is widely ignored by real-world
HTTPS implementations, which means that if you want to interoperate
with them, then you NEED to ignore it too.

Fortunately this isn’t as bad as it sounds, because the HTTP
protocol already includes its own equivalent of close_notify, so
doing this again at the SSL/TLS level is redundant. But not all
protocols do! Therefore, by default Trio implements the safer
standard-compliant version (https_compatible=False). But if
you’re speaking HTTPS or some other protocol where
close_notifys are commonly skipped, then you should set
https_compatible=True; with this setting, Trio will neither
expect nor send close_notify messages.

If you have code that was written to use ssl.SSLSocket [https://docs.python.org/3/library/ssl.html#ssl.SSLSocket] and
now you’re porting it to Trio, then it may be useful to know that a
difference between SSLStream and ssl.SSLSocket [https://docs.python.org/3/library/ssl.html#ssl.SSLSocket] is
that SSLSocket [https://docs.python.org/3/library/ssl.html#ssl.SSLSocket] implements the
https_compatible=True behavior by default.

	
transport_stream

	The underlying transport stream
that was passed to __init__. An example of when this would be
useful is if you’re using SSLStream over a
SocketStream and want to call the
SocketStream’s setsockopt()
method.

	Type:

	trio.abc.Stream

Internally, this class is implemented using an instance of
ssl.SSLObject [https://docs.python.org/3/library/ssl.html#ssl.SSLObject], and all of SSLObject [https://docs.python.org/3/library/ssl.html#ssl.SSLObject]’s methods and
attributes are re-exported as methods and attributes on this class.
However, there is one difference: SSLObject [https://docs.python.org/3/library/ssl.html#ssl.SSLObject] has several
methods that return information about the encrypted connection, like
cipher() [https://docs.python.org/3/library/ssl.html#ssl.SSLSocket.cipher] or
selected_alpn_protocol() [https://docs.python.org/3/library/ssl.html#ssl.SSLSocket.selected_alpn_protocol]. If you call them before the
handshake, when they can’t possibly return useful data, then
ssl.SSLObject [https://docs.python.org/3/library/ssl.html#ssl.SSLObject] returns None, but trio.SSLStream
raises NeedHandshakeError.

This also means that if you register a SNI callback using
sni_callback [https://docs.python.org/3/library/ssl.html#ssl.SSLContext.sni_callback], then the first argument your callback
receives will be a ssl.SSLObject [https://docs.python.org/3/library/ssl.html#ssl.SSLObject].

	
await aclose() → None [https://docs.python.org/3/library/constants.html#None]

	Gracefully shut down this connection, and close the underlying
transport.

If https_compatible is False (the default), then this attempts to
first send a close_notify and then close the underlying stream by
calling its aclose() method.

If https_compatible is set to True, then this simply closes the
underlying stream and marks this stream as closed.

	
await do_handshake() → None [https://docs.python.org/3/library/constants.html#None]

	Ensure that the initial handshake has completed.

The SSL protocol requires an initial handshake to exchange
certificates, select cryptographic keys, and so forth, before any
actual data can be sent or received. You don’t have to call this
method; if you don’t, then SSLStream will automatically
perform the handshake as needed, the first time you try to send or
receive data. But if you want to trigger it manually – for example,
because you want to look at the peer’s certificate before you start
talking to them – then you can call this method.

If the initial handshake is already in progress in another task, this
waits for it to complete and then returns.

If the initial handshake has already completed, this returns
immediately without doing anything (except executing a checkpoint).

Warning

If this method is cancelled, then it may leave the
SSLStream in an unusable state. If this happens then any
future attempt to use the object will raise
trio.BrokenResourceError.

	
await receive_some(max_bytes: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	Read some data from the underlying transport, decrypt it, and
return it.

See trio.abc.ReceiveStream.receive_some() for details.

Warning

If this method is cancelled while the initial handshake
or a renegotiation are in progress, then it may leave the
SSLStream in an unusable state. If this happens then any
future attempt to use the object will raise
trio.BrokenResourceError.

	
await send_all(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] | memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview]) → None [https://docs.python.org/3/library/constants.html#None]

	Encrypt some data and then send it on the underlying transport.

See trio.abc.SendStream.send_all() for details.

Warning

If this method is cancelled, then it may leave the
SSLStream in an unusable state. If this happens then any
attempt to use the object will raise
trio.BrokenResourceError.

	
await unwrap() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][trio.abc.Stream, bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]]

	Cleanly close down the SSL/TLS encryption layer, allowing the
underlying stream to be used for unencrypted communication.

You almost certainly don’t need this.

	Returns:

	A pair (transport_stream, trailing_bytes), where
transport_stream is the underlying transport stream, and
trailing_bytes is a byte string. Since SSLStream
doesn’t necessarily know where the end of the encrypted data will
be, it can happen that it accidentally reads too much from the
underlying stream. trailing_bytes contains this extra data; you
should process it as if it was returned from a call to
transport_stream.receive_some(...).

	
await wait_send_all_might_not_block() → None [https://docs.python.org/3/library/constants.html#None]

	See trio.abc.SendStream.wait_send_all_might_not_block().

And if you’re implementing a server, you can use SSLListener:

	
class trio.SSLListener(transport_listener: Listener[T_Stream [https://docs.python.org/3/library/typing.html#typing.TypeVar]], ssl_context: SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext], *, https_compatible: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Bases: Listener[SSLStream[T_Stream [https://docs.python.org/3/library/typing.html#typing.TypeVar]]]

A Listener for SSL/TLS-encrypted servers.

SSLListener wraps around another Listener, and converts
all incoming connections to encrypted connections by wrapping them
in a SSLStream.

	Parameters:

	
	transport_listener (Listener) – The listener whose incoming
connections will be wrapped in SSLStream.

	ssl_context (SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]) – The SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] that will be
used for incoming connections.

	https_compatible (bool [https://docs.python.org/3/library/functions.html#bool]) – Passed on to SSLStream.

	
transport_listener

	The underlying listener that was
passed to __init__.

	Type:

	trio.abc.Listener

	
await accept() → SSLStream[T_Stream [https://docs.python.org/3/library/typing.html#typing.TypeVar]]

	Accept the next connection and wrap it in an SSLStream.

See trio.abc.Listener.accept() for details.

	
await aclose() → None [https://docs.python.org/3/library/constants.html#None]

	Close the transport listener.

Some methods on SSLStream raise NeedHandshakeError if
you call them before the handshake completes:

	
exception trio.NeedHandshakeError

	Some SSLStream methods can’t return any meaningful data until
after the handshake. If you call them before the handshake, they raise
this error.

Datagram TLS support

Trio also has support for Datagram TLS (DTLS), which is like TLS but
for unreliable UDP connections. This can be useful for applications
where TCP’s reliable in-order delivery is problematic, like
teleconferencing, latency-sensitive games, and VPNs.

Currently, using DTLS with Trio requires PyOpenSSL. We hope to
eventually allow the use of the stdlib ssl [https://docs.python.org/3/library/ssl.html#module-ssl] module as well, but
unfortunately that’s not yet possible.

Warning

Note that PyOpenSSL is in many ways lower-level than the
ssl [https://docs.python.org/3/library/ssl.html#module-ssl] module – in particular, it currently HAS NO BUILT-IN
MECHANISM TO VALIDATE CERTIFICATES. We strongly recommend that
you use the service-identity [https://pypi.org/project/service-identity/] library to validate
hostnames and certificates.

	
class trio.DTLSEndpoint(socket: SocketType, *, incoming_packets_buffer: int [https://docs.python.org/3/library/functions.html#int] = 10)

	A DTLS endpoint.

A single UDP socket can handle arbitrarily many DTLS connections simultaneously,
acting as a client or server as needed. A DTLSEndpoint object holds a UDP socket
and manages these connections, which are represented as DTLSChannel objects.

	Parameters:

	
	socket – (trio.socket.SocketType): A SOCK_DGRAM socket. If you want to accept
incoming connections in server mode, then you should probably bind the socket to
some known port.

	incoming_packets_buffer (int [https://docs.python.org/3/library/functions.html#int]) – Each DTLSChannel using this socket has its own
buffer that holds incoming packets until you call receive to read
them. This lets you adjust the size of this buffer. statistics
lets you check if the buffer has overflowed.

	
socket

	
incoming_packets_buffer

	Both constructor arguments are also exposed as attributes, in case you need to
access them later.

	
connect(address: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]], ssl_context: OpenSSL.SSL.Context [https://www.pyopenssl.org/en/stable/api/ssl.html#OpenSSL.SSL.Context]) → DTLSChannel

	Initiate an outgoing DTLS connection.

Notice that this is a synchronous method. That’s because it doesn’t actually
initiate any I/O – it just sets up a DTLSChannel object. The actual handshake
doesn’t occur until you start using the DTLSChannel. This gives you a chance
to do further configuration first, like setting MTU etc.

	Parameters:

	
	address – The address to connect to. Usually a (host, port) tuple, like
("127.0.0.1", 12345).

	ssl_context (OpenSSL.SSL.Context [https://www.pyopenssl.org/en/stable/api/ssl.html#OpenSSL.SSL.Context]) – The PyOpenSSL context object to use for
this connection.

	Returns:

	DTLSChannel

	
await serve(ssl_context: OpenSSL.SSL.Context [https://www.pyopenssl.org/en/stable/api/ssl.html#OpenSSL.SSL.Context], async_fn: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][object [https://docs.python.org/3/library/functions.html#object]]], *args: Any [https://docs.python.org/3/library/typing.html#typing.Any], task_status: TaskStatus[None [https://docs.python.org/3/library/constants.html#None]] = TASK_STATUS_IGNORED) → None [https://docs.python.org/3/library/constants.html#None]

	Listen for incoming connections, and spawn a handler for each using an
internal nursery.

Similar to serve_tcp, this function never returns until cancelled, or
the DTLSEndpoint is closed and all handlers have exited.

Usage commonly looks like:

async def handler(dtls_channel):
 ...

async with trio.open_nursery() as nursery:
 await nursery.start(dtls_endpoint.serve, ssl_context, handler)
 # ... do other things here ...

The dtls_channel passed into the handler function has already performed the
“cookie exchange” part of the DTLS handshake, so the peer address is
trustworthy. But the actual cryptographic handshake doesn’t happen until you
start using it, giving you a chance for any last minute configuration, and the
option to catch and handle handshake errors.

	Parameters:

	
	ssl_context (OpenSSL.SSL.Context [https://www.pyopenssl.org/en/stable/api/ssl.html#OpenSSL.SSL.Context]) – The PyOpenSSL context object to use for
incoming connections.

	async_fn – The handler function that will be invoked for each incoming
connection.

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Close this socket, and all associated DTLS connections.

This object can also be used as a context manager.

	
class trio.DTLSChannel(*args: object [https://docs.python.org/3/library/functions.html#object], **kwargs: object [https://docs.python.org/3/library/functions.html#object])

	Bases: Channel[bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]

A DTLS connection.

This class has no public constructor – you get instances by calling
DTLSEndpoint.serve or connect.

	
endpoint

	The DTLSEndpoint that this connection is using.

	
peer_address

	The IP/port of the remote peer that this connection is associated with.

	
await do_handshake(*, initial_retransmit_timeout: float [https://docs.python.org/3/library/functions.html#float] = 1.0) → None [https://docs.python.org/3/library/constants.html#None]

	Perform the handshake.

Calling this is optional – if you don’t, then it will be automatically called
the first time you call send or receive. But calling it explicitly can be
useful in case you want to control the retransmit timeout, use a cancel scope to
place an overall timeout on the handshake, or catch errors from the handshake
specifically.

It’s safe to call this multiple times, or call it simultaneously from multiple
tasks – the first call will perform the handshake, and the rest will be no-ops.

	Parameters:

	initial_retransmit_timeout (float [https://docs.python.org/3/library/functions.html#float]) – Since UDP is an unreliable protocol, it’s
possible that some of the packets we send during the handshake will get
lost. To handle this, DTLS uses a timer to automatically retransmit
handshake packets that don’t receive a response. This lets you set the
timeout we use to detect packet loss. Ideally, it should be set to ~1.5
times the round-trip time to your peer, but 1 second is a reasonable
default. There’s some useful guidance here [https://tlswg.org/dtls13-spec/draft-ietf-tls-dtls13.html#name-timer-values].

This is the initial timeout, because if packets keep being lost then Trio
will automatically back off to longer values, to avoid overloading the
network.

	
await send(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → None [https://docs.python.org/3/library/constants.html#None]

	Send a packet of data, securely.

	
await receive() → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Fetch the next packet of data from this connection’s peer, waiting if
necessary.

This is safe to call from multiple tasks simultaneously, in case you have some
reason to do that. And more importantly, it’s cancellation-safe, meaning that
cancelling a call to receive will never cause a packet to be lost or corrupt
the underlying connection.

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Close this connection.

DTLSChannels don’t actually own any OS-level resources – the
socket is owned by the DTLSEndpoint, not the individual connections. So
you don’t really have to call this. But it will interrupt any other tasks
calling receive with a ClosedResourceError, and cause future attempts to use
this connection to fail.

You can also use this object as a synchronous or asynchronous context manager.

	
await aclose() → None [https://docs.python.org/3/library/constants.html#None]

	Close this connection, but asynchronously.

This is included to satisfy the trio.abc.Channel contract. It’s
identical to close, but async.

	
set_ciphertext_mtu(new_mtu: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Tells Trio the largest amount of data that can be sent in a single packet to
this peer [https://en.wikipedia.org/wiki/Maximum_transmission_unit].

Trio doesn’t actually enforce this limit – if you pass a huge packet to send,
then we’ll dutifully encrypt it and attempt to send it. But calling this method
does have two useful effects:

	If called before the handshake is performed, then Trio will automatically
fragment handshake messages to fit within the given MTU. It also might
fragment them even smaller, if it detects signs of packet loss, so setting
this should never be necessary to make a successful connection. But, the
packet loss detection only happens after multiple timeouts have expired, so if
you have reason to believe that a smaller MTU is required, then you can set
this to skip those timeouts and establish the connection more quickly.

	It changes the value returned from get_cleartext_mtu. So if you have some
kind of estimate of the network-level MTU, then you can use this to figure out
how much overhead DTLS will need for hashes/padding/etc., and how much space
you have left for your application data.

The MTU here is measuring the largest UDP payload you think can be sent, the
amount of encrypted data that can be handed to the operating system in a single
call to send. It should not include IP/UDP headers. Note that OS estimates
of the MTU often are link-layer MTUs, so you have to subtract off 28 bytes on
IPv4 and 48 bytes on IPv6 to get the ciphertext MTU.

By default, Trio assumes an MTU of 1472 bytes on IPv4, and 1452 bytes on IPv6,
which correspond to the common Ethernet MTU of 1500 bytes after accounting for
IP/UDP overhead.

	
get_cleartext_mtu() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the largest number of bytes that you can pass in a single call to
send while still fitting within the network-level MTU.

See set_ciphertext_mtu for more details.

	
statistics() → DTLSChannelStatistics

	Returns a DTLSChannelStatistics object with statistics about this connection.

	
class trio.DTLSChannelStatistics(incoming_packets_dropped_in_trio: int [https://docs.python.org/3/library/functions.html#int])

	Currently this has only one attribute:

	incoming_packets_dropped_in_trio (int): Gives a count of the number of
incoming packets from this peer that Trio successfully received from the
network, but then got dropped because the internal channel buffer was full. If
this is non-zero, then you might want to call receive more often, or use a
larger incoming_packets_buffer, or just not worry about it because your
UDP-based protocol should be able to handle the occasional lost packet, right?

Low-level networking with trio.socket

The trio.socket module provides Trio’s basic low-level
networking API. If you’re doing ordinary things with stream-oriented
connections over IPv4/IPv6/Unix domain sockets, then you probably want
to stick to the high-level API described above. If you want to use
UDP, or exotic address families like AF_BLUETOOTH, or otherwise
get direct access to all the quirky bits of your system’s networking
API, then you’re in the right place.

Top-level exports

Generally, the API exposed by trio.socket mirrors that of the
standard library socket [https://docs.python.org/3/library/socket.html#module-socket] module. Most constants (like
SOL_SOCKET) and simple utilities (like inet_aton() [https://docs.python.org/3/library/socket.html#socket.inet_aton])
are simply re-exported unchanged. But there are also some differences,
which are described here.

First, Trio provides analogues to all the standard library functions
that return socket objects; their interface is identical, except that
they’re modified to return Trio socket objects instead:

	
trio.socket.socket(family=-1, type=-1, proto=-1, fileno=None)

	Create a new Trio socket, like socket.socket [https://docs.python.org/3/library/socket.html#socket.socket].

This function’s behavior can be customized using
set_custom_socket_factory().

	
trio.socket.socketpair(family=None, type=SocketKind.SOCK_STREAM, proto=0)

	Like socket.socketpair() [https://docs.python.org/3/library/socket.html#socket.socketpair], but returns a pair of Trio socket
objects.

	
trio.socket.fromfd(fd, family, type, proto=0)

	Like socket.fromfd() [https://docs.python.org/3/library/socket.html#socket.fromfd], but returns a Trio socket object.

	
trio.socket.fromshare(data)

	Like socket.fromshare() [https://docs.python.org/3/library/socket.html#socket.fromshare], but returns a Trio socket object.

In addition, there is a new function to directly convert a standard
library socket into a Trio socket:

	
trio.socket.from_stdlib_socket(sock: socket [https://docs.python.org/3/library/socket.html#socket.socket]) → SocketType

	Convert a standard library socket.socket [https://docs.python.org/3/library/socket.html#socket.socket] object into a Trio
socket object.

Unlike socket.socket [https://docs.python.org/3/library/socket.html#socket.socket], trio.socket.socket() is a
function, not a class; if you want to check whether an object is a
Trio socket, use isinstance(obj, trio.socket.SocketType).

For name lookup, Trio provides the standard functions, but with some
changes:

	
await trio.socket.getaddrinfo(host: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None], port: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None], family: int [https://docs.python.org/3/library/functions.html#int] = 0, type: int [https://docs.python.org/3/library/functions.html#int] = 0, proto: int [https://docs.python.org/3/library/functions.html#int] = 0, flags: int [https://docs.python.org/3/library/functions.html#int] = 0) → list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][socket.AddressFamily, socket.SocketKind, int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]

	Look up a numeric address given a name.

Arguments and return values are identical to socket.getaddrinfo() [https://docs.python.org/3/library/socket.html#socket.getaddrinfo],
except that this version is async.

Also, trio.socket.getaddrinfo() correctly uses IDNA 2008 to process
non-ASCII domain names. (socket.getaddrinfo() [https://docs.python.org/3/library/socket.html#socket.getaddrinfo] uses IDNA 2003, which
can give the wrong result in some cases and cause you to connect to a
different host than the one you intended; see bpo-17305 [https://bugs.python.org/issue17305].)

This function’s behavior can be customized using
set_custom_hostname_resolver().

	
await trio.socket.getnameinfo(sockaddr: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], flags: int [https://docs.python.org/3/library/functions.html#int]) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Look up a name given a numeric address.

Arguments and return values are identical to socket.getnameinfo() [https://docs.python.org/3/library/socket.html#socket.getnameinfo],
except that this version is async.

This function’s behavior can be customized using
set_custom_hostname_resolver().

	
await trio.socket.getprotobyname(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → int [https://docs.python.org/3/library/functions.html#int]

	Look up a protocol number by name. (Rarely used.)

Like socket.getprotobyname() [https://docs.python.org/3/library/socket.html#socket.getprotobyname], but async.

Trio intentionally DOES NOT include some obsolete, redundant, or
broken features:

	gethostbyname() [https://docs.python.org/3/library/socket.html#socket.gethostbyname], gethostbyname_ex() [https://docs.python.org/3/library/socket.html#socket.gethostbyname_ex],
gethostbyaddr() [https://docs.python.org/3/library/socket.html#socket.gethostbyaddr]: obsolete; use
getaddrinfo() [https://docs.python.org/3/library/socket.html#socket.getaddrinfo] and getnameinfo() [https://docs.python.org/3/library/socket.html#socket.getnameinfo] instead.

	getservbyport() [https://docs.python.org/3/library/socket.html#socket.getservbyport]: obsolete and buggy [https://bugs.python.org/issue30482]; instead, do:

_, service_name = await getnameinfo((127.0.0.1, port), NI_NUMERICHOST))

	getservbyname() [https://docs.python.org/3/library/socket.html#socket.getservbyname]: obsolete and buggy [https://bugs.python.org/issue30482]; instead, do:

await getaddrinfo(None, service_name)

	getfqdn() [https://docs.python.org/3/library/socket.html#socket.getfqdn]: obsolete; use getaddrinfo() with the
AI_CANONNAME flag.

	getdefaulttimeout() [https://docs.python.org/3/library/socket.html#socket.getdefaulttimeout],
setdefaulttimeout() [https://docs.python.org/3/library/socket.html#socket.setdefaulttimeout]: instead, use Trio’s standard
support for Cancellation and timeouts.

	On Windows, SO_REUSEADDR is not exported, because it’s a trap:
the name is the same as Unix SO_REUSEADDR, but the semantics are
different and extremely broken [https://msdn.microsoft.com/en-us/library/windows/desktop/ms740621(v=vs.85).aspx]. In
the very rare cases where you actually want SO_REUSEADDR on
Windows, then it can still be accessed from the standard library’s
socket [https://docs.python.org/3/library/socket.html#module-socket] module.

Socket objects

	
class trio.socket.SocketType

	
Note

trio.socket.SocketType is an abstract class and
cannot be instantiated directly; you get concrete socket objects
by calling constructors like trio.socket.socket().
However, you can use it to check if an object is a Trio socket
via isinstance(obj, trio.socket.SocketType).

Trio socket objects are overall very similar to the standard
library socket objects [https://docs.python.org/3/library/socket.html#socket-objects], with a few
important differences:

First, and most obviously, everything is made “Trio-style”:
blocking methods become async methods, and the following attributes
are not supported:

	setblocking() [https://docs.python.org/3/library/socket.html#socket.socket.setblocking]: Trio sockets always act like
blocking sockets; if you need to read/write from multiple sockets
at once, then create multiple tasks.

	settimeout() [https://docs.python.org/3/library/socket.html#socket.socket.settimeout]: see Cancellation and timeouts instead.

	makefile() [https://docs.python.org/3/library/socket.html#socket.socket.makefile]: Python’s file-like API is
synchronous, so it can’t be implemented on top of an async
socket.

	sendall() [https://docs.python.org/3/library/socket.html#socket.socket.sendall]: Could be supported, but you’re
better off using the higher-level
SocketStream, and specifically its
send_all() method, which also does
additional error checking.

In addition, the following methods are similar to the equivalents
in socket.socket [https://docs.python.org/3/library/socket.html#socket.socket], but have some Trio-specific quirks:

	
await connect()

	Connect the socket to a remote address.

Similar to socket.socket.connect() [https://docs.python.org/3/library/socket.html#socket.socket.connect], except async.

Warning

Due to limitations of the underlying operating system APIs, it is
not always possible to properly cancel a connection attempt once it
has begun. If connect() is cancelled, and is unable to
abort the connection attempt, then it will:

	forcibly close the socket to prevent accidental reuse

	raise Cancelled.

tl;dr: if connect() is cancelled then the socket is
left in an unknown state – possibly open, and possibly
closed. The only reasonable thing to do is to close it.

	
is_readable()

	Check whether the socket is readable or not.

	
sendfile()

	Not implemented yet! [https://github.com/python-trio/trio/issues/45]

We also keep track of an extra bit of state, because it turns out
to be useful for trio.SocketStream:

	
did_shutdown_SHUT_WR

	This bool [https://docs.python.org/3/library/functions.html#bool] attribute is True if you’ve called
sock.shutdown(SHUT_WR) or sock.shutdown(SHUT_RDWR), and
False otherwise.

The following methods are identical to their equivalents in
socket.socket [https://docs.python.org/3/library/socket.html#socket.socket], except async, and the ones that take address
arguments require pre-resolved addresses:

	accept() [https://docs.python.org/3/library/socket.html#socket.socket.accept]

	bind() [https://docs.python.org/3/library/socket.html#socket.socket.bind]

	recv() [https://docs.python.org/3/library/socket.html#socket.socket.recv]

	recv_into() [https://docs.python.org/3/library/socket.html#socket.socket.recv_into]

	recvfrom() [https://docs.python.org/3/library/socket.html#socket.socket.recvfrom]

	recvfrom_into() [https://docs.python.org/3/library/socket.html#socket.socket.recvfrom_into]

	recvmsg() [https://docs.python.org/3/library/socket.html#socket.socket.recvmsg] (if available)

	recvmsg_into() [https://docs.python.org/3/library/socket.html#socket.socket.recvmsg_into] (if available)

	send() [https://docs.python.org/3/library/socket.html#socket.socket.send]

	sendto() [https://docs.python.org/3/library/socket.html#socket.socket.sendto]

	sendmsg() [https://docs.python.org/3/library/socket.html#socket.socket.sendmsg] (if available)

All methods and attributes not mentioned above are identical to
their equivalents in socket.socket [https://docs.python.org/3/library/socket.html#socket.socket]:

	family [https://docs.python.org/3/library/socket.html#socket.socket.family]

	type [https://docs.python.org/3/library/socket.html#socket.socket.type]

	proto [https://docs.python.org/3/library/socket.html#socket.socket.proto]

	fileno() [https://docs.python.org/3/library/socket.html#socket.socket.fileno]

	listen() [https://docs.python.org/3/library/socket.html#socket.socket.listen]

	getpeername() [https://docs.python.org/3/library/socket.html#socket.socket.getpeername]

	getsockname() [https://docs.python.org/3/library/socket.html#socket.socket.getsockname]

	close() [https://docs.python.org/3/library/socket.html#socket.socket.close]

	shutdown() [https://docs.python.org/3/library/socket.html#socket.socket.shutdown]

	setsockopt() [https://docs.python.org/3/library/socket.html#socket.socket.setsockopt]

	getsockopt() [https://docs.python.org/3/library/socket.html#socket.socket.getsockopt]

	dup() [https://docs.python.org/3/library/socket.html#socket.socket.dup]

	detach() [https://docs.python.org/3/library/socket.html#socket.socket.detach]

	share() [https://docs.python.org/3/library/socket.html#socket.socket.share]

	set_inheritable() [https://docs.python.org/3/library/socket.html#socket.socket.set_inheritable]

	get_inheritable() [https://docs.python.org/3/library/socket.html#socket.socket.get_inheritable]

Asynchronous filesystem I/O

Trio provides built-in facilities for performing asynchronous
filesystem operations like reading or renaming a file. Generally, we
recommend that you use these instead of Python’s normal synchronous
file APIs. But the tradeoffs here are somewhat subtle: sometimes
people switch to async I/O, and then they’re surprised and confused
when they find it doesn’t speed up their program. The next section
explains the theory behind async file I/O, to help you better
understand your code’s behavior. Or, if you just want to get started,
you can jump down to the API overview.

Background: Why is async file I/O useful? The answer may surprise you

Many people expect that switching from synchronous file I/O to
async file I/O will always make their program faster. This is not
true! If we just look at total throughput, then async file I/O might
be faster, slower, or about the same, and it depends in a complicated
way on things like your exact patterns of disk access, or how much RAM
you have. The main motivation for async file I/O is not to improve
throughput, but to reduce the frequency of latency glitches.

To understand why, you need to know two things.

First, right now no mainstream operating system offers a generic,
reliable, native API for async file or filesystem operations, so we
have to fake it by using threads (specifically,
trio.to_thread.run_sync()). This is cheap but isn’t free: on a
typical PC, dispatching to a worker thread adds something like ~100 µs
of overhead to each operation. (“µs” is pronounced “microseconds”, and
there are 1,000,000 µs in a second. Note that all the numbers here are
going to be rough orders of magnitude to give you a sense of scale; if
you need precise numbers for your environment, measure!)

And second, the cost of a disk operation is incredibly
bimodal. Sometimes, the data you need is already cached in RAM, and
then accessing it is very, very fast – calling io.FileIO [https://docs.python.org/3/library/io.html#io.FileIO]'s
read method on a cached file takes on the order of ~1 µs. But when
the data isn’t cached, then accessing it is much, much slower: the
average is ~100 µs for SSDs and ~10,000 µs for spinning disks, and if
you look at tail latencies then for both types of storage you’ll see
cases where occasionally some operation will be 10x or 100x slower
than average. And that’s assuming your program is the only thing
trying to use that disk – if you’re on some oversold cloud VM fighting
for I/O with other tenants then who knows what will happen. And some
operations can require multiple disk accesses.

Putting these together: if your data is in RAM then it should be clear
that using a thread is a terrible idea – if you add 100 µs of overhead
to a 1 µs operation, then that’s a 100x slowdown! On the other hand,
if your data’s on a spinning disk, then using a thread is great –
instead of blocking the main thread and all tasks for 10,000 µs, we
only block them for 100 µs and can spend the rest of that time running
other tasks to get useful work done, which can effectively be a 100x
speedup.

But here’s the problem: for any individual I/O operation, there’s no
way to know in advance whether it’s going to be one of the fast ones
or one of the slow ones, so you can’t pick and choose. When you switch
to async file I/O, it makes all the fast operations slower, and all
the slow operations faster. Is that a win? In terms of overall speed,
it’s hard to say: it depends what kind of disks you’re using and your
kernel’s disk cache hit rate, which in turn depends on your file
access patterns, how much spare RAM you have, the load on your
service, … all kinds of things. If the answer is important to you,
then there’s no substitute for measuring your code’s actual behavior
in your actual deployment environment. But what we can say is that
async disk I/O makes performance much more predictable across a wider
range of runtime conditions.

If you’re not sure what to do, then we recommend that you use async
disk I/O by default, because it makes your code more robust when
conditions are bad, especially with regards to tail latencies; this
improves the chances that what your users see matches what you saw in
testing. Blocking the main thread stops all tasks from running for
that time. 10,000 µs is 10 ms, and it doesn’t take many 10 ms glitches
to start adding up to real money [https://google.com/search?q=latency+cost]; async disk I/O can help
prevent those. Just don’t expect it to be magic, and be aware of the
tradeoffs.

API overview

If you want to perform general filesystem operations like creating and
listing directories, renaming files, or checking file metadata – or if
you just want a friendly way to work with filesystem paths – then you
want trio.Path. It’s an asyncified replacement for the
standard library’s pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], and provides the same
comprehensive set of operations.

For reading and writing to files and file-like objects, Trio also
provides a mechanism for wrapping any synchronous file-like object
into an asynchronous interface. If you have a trio.Path
object you can get one of these by calling its open()
method; or if you know the file’s name you can open it directly with
trio.open_file(). Alternatively, if you already have an open
file-like object, you can wrap it with trio.wrap_file() – one
case where this is especially useful is to wrap io.BytesIO [https://docs.python.org/3/library/io.html#io.BytesIO] or
io.StringIO [https://docs.python.org/3/library/io.html#io.StringIO] when writing tests.

Asynchronous path objects

	
class trio.Path(*args: str [https://docs.python.org/3/library/stdtypes.html#str] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike][str [https://docs.python.org/3/library/stdtypes.html#str]])

	A pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] wrapper that executes blocking methods in
trio.to_thread.run_sync().

	
as_posix()

	Return the string representation of the path with forward (/)
slashes.

	
as_uri()

	Return the path as a ‘file’ URI.

	
await chmod(mode, *, follow_symlinks=True)

	Like chmod() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.chmod], but async.

	
classmethod await cwd()

	Like cwd() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.cwd], but async.

	
await exists()

	Like exists() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.exists], but async.

	
await expanduser()

	Like expanduser() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.expanduser], but async.

	
await glob(pattern)

	Like glob() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob], but async.

	
await group()

	Like group() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.group], but async.

	
await hardlink_to(target)

	Like hardlink_to() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.hardlink_to], but async.

	
classmethod await home()

	Like home() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.home], but async.

	
is_absolute()

	True if the path is absolute (has both a root and, if applicable,
a drive).

	
await is_block_device()

	Like is_block_device() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.is_block_device], but async.

	
await is_char_device()

	Like is_char_device() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.is_char_device], but async.

	
await is_dir()

	Like is_dir() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.is_dir], but async.

	
await is_fifo()

	Like is_fifo() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.is_fifo], but async.

	
await is_file()

	Like is_file() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.is_file], but async.

	
await is_mount()

	Like is_mount() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.is_mount], but async.

	
is_relative_to(*other)

	Return True if the path is relative to another path or False.

	
is_reserved()

	Return True if the path contains one of the special names reserved
by the system, if any.

	
await is_socket()

	Like is_socket() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.is_socket], but async.

	
await is_symlink()

	Like is_symlink() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.is_symlink], but async.

	
await iterdir()

	Like iterdir() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.iterdir], but async.

This is an async method that returns a synchronous iterator, so you
use it like:

for subpath in await mypath.iterdir():
 ...

Note that it actually loads the whole directory list into memory
immediately, during the initial call. (See issue #501 [https://github.com/python-trio/trio/issues/501] for discussion.)

	
joinpath(*args)

	Combine this path with one or several arguments, and return a
new path representing either a subpath (if all arguments are relative
paths) or a totally different path (if one of the arguments is
anchored).

	
await lchmod(mode)

	Like lchmod() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.lchmod], but async.

	
await link_to(target)

	Like Python 3.8-3.11’s link_to() [https://docs.python.org/3.11/library/pathlib.html#pathlib.Path.link_to], but async.

	Deprecated:

	This method was deprecated in Python 3.10 and entirely removed in 3.12. Use hardlink_to() instead which has a more meaningful parameter order.

	
await lstat()

	Like lstat() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.lstat], but async.

	
match(path_pattern)

	Return True if this path matches the given pattern.

	
await mkdir(mode=511, parents=False, exist_ok=False)

	Like mkdir() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.mkdir], but async.

	
await open(mode='r', buffering=-1, encoding=None, errors=None, newline=None)

	Open the file pointed by this path and return a file object, as
the built-in open() function does.

	
await owner()

	Like owner() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.owner], but async.

	
await read_bytes()

	Like read_bytes() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.read_bytes], but async.

	
await read_text(encoding=None, errors=None)

	Like read_text() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.read_text], but async.

	
await readlink()

	Like readlink() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.readlink], but async.

	
relative_to(*other)

	Return the relative path to another path identified by the passed
arguments. If the operation is not possible (because this is not
a subpath of the other path), raise ValueError.

	
await rename(target)

	Like rename() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.rename], but async.

	
await replace(target)

	Like replace() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.replace], but async.

	
await resolve(strict=False)

	Like resolve() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.resolve], but async.

	
await rglob(pattern)

	Like rglob() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.rglob], but async.

	
await rmdir()

	Like rmdir() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.rmdir], but async.

	
await samefile(other_path)

	Like samefile() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.samefile], but async.

	
await stat(*, follow_symlinks=True)

	Like stat() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.stat], but async.

	
await symlink_to(target, target_is_directory=False)

	Like symlink_to() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.symlink_to], but async.

	
await touch(mode=438, exist_ok=True)

	Like touch() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.touch], but async.

	
await unlink(missing_ok=False)

	Like unlink() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.unlink], but async.

	
with_name(name)

	Return a new path with the file name changed.

	
with_stem(stem)

	Return a new path with the stem changed.

	
with_suffix(suffix)

	Return a new path with the file suffix changed. If the path
has no suffix, add given suffix. If the given suffix is an empty
string, remove the suffix from the path.

	
await write_bytes(data)

	Like write_bytes() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.write_bytes], but async.

	
await write_text(data, encoding=None, errors=None, newline=None)

	Like write_text() [https://docs.python.org/3/library/pathlib.html#pathlib.Path.write_text], but async.

Asynchronous file objects

	
await trio.open_file(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=None, opener=None)

	Asynchronous version of open() [https://docs.python.org/3/library/functions.html#open].

	Returns:

	An asynchronous file object

Example:

async with await trio.open_file(filename) as f:
 async for line in f:
 pass

assert f.closed

See also

trio.Path.open()

	
trio.wrap_file(file)

	This wraps any file object in a wrapper that provides an asynchronous
file object interface.

	Parameters:

	file – a file object [https://docs.python.org/3/glossary.html#term-file-object]

	Returns:

	An asynchronous file object that wraps file

Example:

async_file = trio.wrap_file(StringIO('asdf'))

assert await async_file.read() == 'asdf'

	
Asynchronous file interface

	Trio’s asynchronous file objects have an interface that
automatically adapts to the object being wrapped. Intuitively, you
can mostly treat them like a regular file object [https://docs.python.org/3/glossary.html#term-file-object], except
adding an await in front of any of methods that do I/O. The
definition of file object [https://docs.python.org/3/glossary.html#term-file-object] is a little vague in Python
though, so here are the details:

	Synchronous attributes/methods: if any of the following
attributes or methods are present, then they’re re-exported
unchanged: closed, encoding, errors, fileno,
isatty, newlines, readable, seekable,
writable, buffer, raw, line_buffering,
closefd, name, mode, getvalue, getbuffer.

	Async methods: if any of the following methods are present, then
they’re re-exported as an async method: flush, read,
read1, readall, readinto, readline,
readlines, seek, tell, truncate, write,
writelines, readinto1, peek, detach.

Special notes:

	Async file objects implement Trio’s
AsyncResource interface: you close them by
calling aclose() instead of
close (!!), and they can be used as async context
managers. Like all aclose()
methods, the aclose method on async file objects is
guaranteed to close the file before returning, even if it is
cancelled or otherwise raises an error.

	Using the same async file object from multiple tasks
simultaneously: because the async methods on async file objects
are implemented using threads, it’s only safe to call two of them
at the same time from different tasks IF the underlying
synchronous file object is thread-safe. You should consult the
documentation for the object you’re wrapping. For objects
returned from trio.open_file() or trio.Path.open(),
it depends on whether you open the file in binary mode or text
mode: binary mode files are task-safe/thread-safe, text mode
files are not [https://docs.python.org/3/library/io.html#multi-threading].

	Async file objects can be used as async iterators to iterate over
the lines of the file:

async with await trio.open_file(...) as f:
 async for line in f:
 print(line)

	The detach method, if present, returns an async file object.

This should include all the attributes exposed by classes in
io [https://docs.python.org/3/library/io.html#module-io]. But if you’re wrapping an object that has other
attributes that aren’t on the list above, then you can access them
via the .wrapped attribute:

	
wrapped

	The underlying synchronous file object.

Spawning subprocesses

Trio provides support for spawning other programs as subprocesses,
communicating with them via pipes, sending them signals, and waiting
for them to exit.

Most of the time, this is done through our high-level interface,
trio.run_process. It lets you either run a process to completion
while optionally capturing the output, or else run it in a background
task and interact with it while it’s running:

	
await trio.run_process(command: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike][str [https://docs.python.org/3/library/stdtypes.html#str]] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]] | Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike][str [https://docs.python.org/3/library/stdtypes.html#str]] | PathLike [https://docs.python.org/3/library/os.html#os.PathLike][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]], *, stdin: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] | memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview] | int [https://docs.python.org/3/library/functions.html#int] | HasFileno | None [https://docs.python.org/3/library/constants.html#None] = b'', capture_stdout: bool [https://docs.python.org/3/library/functions.html#bool] = False, capture_stderr: bool [https://docs.python.org/3/library/functions.html#bool] = False, check: bool [https://docs.python.org/3/library/functions.html#bool] = True, deliver_cancel: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[Process], Awaitable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Awaitable][object [https://docs.python.org/3/library/functions.html#object]]] | None [https://docs.python.org/3/library/constants.html#None] = None, task_status: TaskStatus[Process] = TASK_STATUS_IGNORED, **options: object [https://docs.python.org/3/library/functions.html#object]) → CompletedProcess [https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]

	Run command in a subprocess and wait for it to complete.

This function can be called in two different ways.

One option is a direct call, like:

completed_process_info = await trio.run_process(...)

In this case, it returns a subprocess.CompletedProcess [https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess] instance
describing the results. Use this if you want to treat a process like a
function call.

The other option is to run it as a task using Nursery.start – the enhanced version
of start_soon that lets a task pass back a value during startup:

process = await nursery.start(trio.run_process, ...)

In this case, start returns a Process object that you can use
to interact with the process while it’s running. Use this if you want to
treat a process like a background task.

Either way, run_process makes sure that the process has exited before
returning, handles cancellation, optionally checks for errors, and
provides some convenient shorthands for dealing with the child’s
input/output.

Input: run_process supports all the same stdin= arguments as
subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen]. In addition, if you simply want to pass in some fixed
data, you can pass a plain bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object, and run_process will take
care of setting up a pipe, feeding in the data you gave, and then sending
end-of-file. The default is b"", which means that the child will receive
an empty stdin. If you want the child to instead read from the parent’s
stdin, use stdin=None.

Output: By default, any output produced by the subprocess is
passed through to the standard output and error streams of the
parent Trio process.

When calling run_process directly, you can capture the subprocess’s output by
passing capture_stdout=True to capture the subprocess’s standard output, and/or
capture_stderr=True to capture its standard error. Captured data is collected up
by Trio into an in-memory buffer, and then provided as the
stdout [https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess.stdout] and/or
stderr [https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess.stderr] attributes of the returned
CompletedProcess [https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess] object. The value for any stream that was not
captured will be None.

If you want to capture both stdout and stderr while keeping them
separate, pass capture_stdout=True, capture_stderr=True.

If you want to capture both stdout and stderr but mixed together
in the order they were printed, use: capture_stdout=True, stderr=subprocess.STDOUT.
This directs the child’s stderr into its stdout, so the combined
output will be available in the stdout [https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess.stdout]
attribute.

If you’re using await nursery.start(trio.run_process, ...) and want to capture
the subprocess’s output for further processing, then use stdout=subprocess.PIPE
and then make sure to read the data out of the Process.stdout stream. If you want
to capture stderr separately, use stderr=subprocess.PIPE. If you want to capture
both, but mixed together in the correct order, use stdout=subprocess.PIPE,
stderr=subprocess.STDOUT.

Error checking: If the subprocess exits with a nonzero status
code, indicating failure, run_process() raises a
subprocess.CalledProcessError [https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError] exception rather than
returning normally. The captured outputs are still available as
the stdout [https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError.stdout] and
stderr [https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError.stderr] attributes of that
exception. To disable this behavior, so that run_process()
returns normally even if the subprocess exits abnormally, pass check=False.

Note that this can make the capture_stdout and capture_stderr
arguments useful even when starting run_process as a task: if you only
care about the output if the process fails, then you can enable capturing
and then read the output off of the CalledProcessError [https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError].

Cancellation: If cancelled, run_process sends a termination
request to the subprocess, then waits for it to fully exit. The
deliver_cancel argument lets you control how the process is terminated.

Note

run_process is intentionally similar to the standard library
subprocess.run [https://docs.python.org/3/library/subprocess.html#subprocess.run], but some of the defaults are different. Specifically, we
default to:

	check=True, because “errors should never pass silently / unless
explicitly silenced” [https://www.python.org/dev/peps/pep-0020/].

	stdin=b"", because it produces less-confusing results if a subprocess
unexpectedly tries to read from stdin.

To get the subprocess.run [https://docs.python.org/3/library/subprocess.html#subprocess.run] semantics, use check=False, stdin=None.

	Parameters:

	
	command (list [https://docs.python.org/3/library/stdtypes.html#list] or str [https://docs.python.org/3/library/stdtypes.html#str]) – The command to run. Typically this is a
sequence of strings such as ['ls', '-l', 'directory with spaces'],
where the first element names the executable to invoke and the other
elements specify its arguments. With shell=True in the
**options, or on Windows, command may alternatively
be a string, which will be parsed following platform-dependent
quoting rules.

	stdin (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], subprocess.PIPE, file descriptor, or None) – The
bytes to provide to the subprocess on its standard input stream, or
None if the subprocess’s standard input should come from the
same place as the parent Trio process’s standard input. As is the
case with the subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess] module, you can also pass a file
descriptor or an object with a fileno() method, in which case
the subprocess’s standard input will come from that file.

When starting run_process as a background task, you can also use
stdin=subprocess.PIPE, in which case Process.stdin will be a
SendStream that you can use to send data to the child.

	capture_stdout (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, capture the bytes that the subprocess
writes to its standard output stream and return them in the
stdout [https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess.stdout] attribute of the returned
subprocess.CompletedProcess [https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess] or subprocess.CalledProcessError [https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError].

	capture_stderr (bool [https://docs.python.org/3/library/functions.html#bool]) – If true, capture the bytes that the subprocess
writes to its standard error stream and return them in the
stderr [https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess.stderr] attribute of the returned
CompletedProcess [https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess] or subprocess.CalledProcessError [https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError].

	check (bool [https://docs.python.org/3/library/functions.html#bool]) – If false, don’t validate that the subprocess exits
successfully. You should be sure to check the
returncode attribute of the returned object if you pass
check=False, so that errors don’t pass silently.

	deliver_cancel (async function or None) – If run_process is cancelled,
then it needs to kill the child process. There are multiple ways to
do this, so we let you customize it.

If you pass None (the default), then the behavior depends on the
platform:

	On Windows, Trio calls TerminateProcess, which should kill the
process immediately.

	On Unix-likes, the default behavior is to send a SIGTERM, wait
5 seconds, and send a SIGKILL.

Alternatively, you can customize this behavior by passing in an
arbitrary async function, which will be called with the Process
object as an argument. For example, the default Unix behavior could
be implemented like this:

async def my_deliver_cancel(process):
 process.send_signal(signal.SIGTERM)
 await trio.sleep(5)
 process.send_signal(signal.SIGKILL)

When the process actually exits, the deliver_cancel function
will automatically be cancelled – so if the process exits after
SIGTERM, then we’ll never reach the SIGKILL.

In any case, run_process will always wait for the child process to
exit before raising Cancelled.

	**options – run_process() also accepts any general subprocess
options and passes them on to the
Process constructor. This includes the
stdout and stderr options, which provide additional
redirection possibilities such as stderr=subprocess.STDOUT,
stdout=subprocess.DEVNULL, or file descriptors.

	Returns:

	When called normally – a subprocess.CompletedProcess [https://docs.python.org/3/library/subprocess.html#subprocess.CompletedProcess] instance
describing the return code and outputs.

When called via Nursery.start – a trio.Process instance.

	Raises:

	
	UnicodeError [https://docs.python.org/3/library/exceptions.html#UnicodeError] – if stdin is specified as a Unicode string, rather
 than bytes

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if multiple redirections are specified for the same
 stream, e.g., both capture_stdout=True and
 stdout=subprocess.DEVNULL

	subprocess.CalledProcessError [https://docs.python.org/3/library/subprocess.html#subprocess.CalledProcessError] – if check=False is not passed
 and the process exits with a nonzero exit status

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – if an error is encountered starting or communicating with
 the process

Note

The child process runs in the same process group as the parent
Trio process, so a Ctrl+C will be delivered simultaneously to both
parent and child. If you don’t want this behavior, consult your
platform’s documentation for starting child processes in a different
process group.

	
class trio._subprocess.HasFileno(Protocol)

	Represents any file-like object that has a file descriptor.

	
fileno() → int [https://docs.python.org/3/library/functions.html#int]

	

	
class trio.Process

	A child process. Like subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen], but async.

This class has no public constructor. The most common way to get a
Process object is to combine Nursery.start with run_process:

process_object = await nursery.start(run_process, ...)

This way, run_process supervises the process and makes sure that it is
cleaned up properly, while optionally checking the return value, feeding
it input, and so on.

If you need more control – for example, because you want to spawn a child
process that outlives your program – then another option is to use
trio.lowlevel.open_process:

process_object = await trio.lowlevel.open_process(...)

	
args

	The command passed at construction time,
specifying the process to execute and its arguments.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]

	
pid

	The process ID of the child process managed by this object.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
stdin

	A stream connected to the child’s
standard input stream: when you write bytes here, they become available
for the child to read. Only available if the Process
was constructed using stdin=PIPE; otherwise this will be None.

	Type:

	trio.abc.SendStream or None

	
stdout

	A stream connected to
the child’s standard output stream: when the child writes to
standard output, the written bytes become available for you
to read here. Only available if the Process was
constructed using stdout=PIPE; otherwise this will be None.

	Type:

	trio.abc.ReceiveStream or None

	
stderr

	A stream connected to
the child’s standard error stream: when the child writes to
standard error, the written bytes become available for you
to read here. Only available if the Process was
constructed using stderr=PIPE; otherwise this will be None.

	Type:

	trio.abc.ReceiveStream or None

	
stdio

	A stream that sends data to
the child’s standard input and receives from the child’s standard
output. Only available if both stdin and stdout are
available; otherwise this will be None.

	Type:

	trio.StapledStream or None

	
returncode

	The exit status of the process (an integer), or None if it’s
still running.

By convention, a return code of zero indicates success. On
UNIX, negative values indicate termination due to a signal,
e.g., -11 if terminated by signal 11 (SIGSEGV). On
Windows, a process that exits due to a call to
Process.terminate() will have an exit status of 1.

Unlike the standard library subprocess.Popen.returncode [https://docs.python.org/3/library/subprocess.html#subprocess.Popen.returncode], you don’t
have to call poll or wait to update this attribute; it’s
automatically updated as needed, and will always give you the latest
information.

	
await wait() → int [https://docs.python.org/3/library/functions.html#int]

	Block until the process exits.

	Returns:

	The exit status of the process; see returncode.

	
poll() → int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	Returns the exit status of the process (an integer), or None if
it’s still running.

Note that on Trio (unlike the standard library subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen]),
process.poll() and process.returncode always give the same
result. See returncode for more details. This method is only
included to make it easier to port code from subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess].

	
kill() → None [https://docs.python.org/3/library/constants.html#None]

	Immediately terminate the process.

On UNIX, this is equivalent to
send_signal(signal.SIGKILL). On Windows, it calls
TerminateProcess. In both cases, the process cannot
prevent itself from being killed, but the termination will be
delivered asynchronously; use wait() if you want to
ensure the process is actually dead before proceeding.

	
terminate() → None [https://docs.python.org/3/library/constants.html#None]

	Terminate the process, politely if possible.

On UNIX, this is equivalent to
send_signal(signal.SIGTERM); by convention this requests
graceful termination, but a misbehaving or buggy process might
ignore it. On Windows, terminate() forcibly terminates the
process in the same manner as kill().

	
send_signal(sig: Signals [https://docs.python.org/3/library/signal.html#signal.Signals] | int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Send signal sig to the process.

On UNIX, sig may be any signal defined in the
signal [https://docs.python.org/3/library/signal.html#module-signal] module, such as signal.SIGINT or
signal.SIGTERM. On Windows, it may be anything accepted by
the standard library subprocess.Popen.send_signal() [https://docs.python.org/3/library/subprocess.html#subprocess.Popen.send_signal].

Note

communicate() [https://docs.python.org/3/library/subprocess.html#subprocess.Popen.communicate] is not provided as a
method on Process objects; call run_process()
normally for simple capturing, or write the loop yourself if you
have unusual needs. communicate() [https://docs.python.org/3/library/subprocess.html#subprocess.Popen.communicate] has
quite unusual cancellation behavior in the standard library (on
some platforms it spawns a background thread which continues to
read from the child process even after the timeout has expired)
and we wanted to provide an interface with fewer surprises.

If trio.run_process is too limiting, we also offer a low-level API,
trio.lowlevel.open_process. For example, if you want to spawn a
child process that will outlive the parent process and be
orphaned, then run_process can’t do that, but
open_process can.

Options for starting subprocesses

All of Trio’s subprocess APIs accept the numerous keyword arguments used
by the standard subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess] module to control the environment in
which a process starts and the mechanisms used for communicating with
it. These may be passed wherever you see **options in the
documentation below. See the full list [https://docs.python.org/3/library/subprocess.html#popen-constructor]
or just the frequently used ones [https://docs.python.org/3/library/subprocess.html#frequently-used-arguments]
in the subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess] documentation. (You may need to import
subprocess in order to access constants such as PIPE or
DEVNULL.)

Currently, Trio always uses unbuffered byte streams for communicating
with a process, so it does not support the encoding, errors,
universal_newlines (alias text), and bufsize
options.

Quoting: more than you wanted to know

The command to run and its arguments usually must be passed to Trio’s
subprocess APIs as a sequence of strings, where the first element in
the sequence specifies the command to run and the remaining elements
specify its arguments, one argument per element. This form is used
because it avoids potential quoting pitfalls; for example, you can run
["cp", "-f", source_file, dest_file] without worrying about
whether source_file or dest_file contains spaces.

If you only run subprocesses without shell=True and on UNIX,
that’s all you need to know about specifying the command. If you use
shell=True or run on Windows, you probably should read the
rest of this section to be aware of potential pitfalls.

With shell=True on UNIX, you must specify the command as a single
string, which will be passed to the shell as if you’d entered it at an
interactive prompt. The advantage of this option is that it lets you
use shell features like pipes and redirection without writing code to
handle them. For example, you can write Process("ls | grep
some_string", shell=True). The disadvantage is that you must
account for the shell’s quoting rules, generally by wrapping in
shlex.quote() [https://docs.python.org/3/library/shlex.html#shlex.quote] any argument that might contain spaces, quotes, or
other shell metacharacters. If you don’t do that, your safe-looking
f"ls | grep {some_string}" might end in disaster when invoked with
some_string = "foo; rm -rf /".

On Windows, the fundamental API for process spawning (the
CreateProcess() system call) takes a string, not a list, and it’s
actually up to the child process to decide how it wants to split that
string into individual arguments. Since the C language specifies that
main() should take a list of arguments, most programs you
encounter will follow the rules used by the Microsoft C/C++ runtime.
subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen], and thus also Trio, uses these rules
when it converts an argument sequence to a string, and they
are documented [https://docs.python.org/3/library/subprocess.html#converting-argument-sequence]
alongside the subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess] module. There is no documented
Python standard library function that can directly perform that
conversion, so even on Windows, you almost always want to pass an
argument sequence rather than a string. But if the program you’re
spawning doesn’t split its command line back into individual arguments
in the standard way, you might need to pass a string to work around this.
(Or you might just be out of luck: as far as I can tell, there’s simply
no way to pass an argument containing a double-quote to a Windows
batch file.)

On Windows with shell=True, things get even more chaotic. Now
there are two separate sets of quoting rules applied, one by the
Windows command shell CMD.EXE and one by the process being
spawned, and they’re different. (And there’s no shlex.quote() [https://docs.python.org/3/library/shlex.html#shlex.quote]
to save you: it uses UNIX-style quoting rules, even on Windows.) Most
special characters interpreted by the shell &<>()^| are not
treated as special if the shell thinks they’re inside double quotes,
but %FOO% environment variable substitutions still are, and the
shell doesn’t provide any way to write a double quote inside a
double-quoted string. Outside double quotes, any character (including
a double quote) can be escaped using a leading ^. But since a
pipeline is processed by running each command in the pipeline in a
subshell, multiple layers of escaping can be needed:

echo ^^^&x | find "x" | find "x" # prints: &x

And if you combine pipelines with () grouping, you can need even more
levels of escaping:

(echo ^^^^^^^&x | find "x") | find "x" # prints: &x

Since process creation takes a single arguments string, CMD.EXE's
quoting does not influence word splitting, and double quotes are not
removed during CMD.EXE’s expansion pass. Double quotes are troublesome
because CMD.EXE handles them differently from the MSVC runtime rules; in:

prog.exe "foo \"bar\" baz"

the program will see one argument foo "bar" baz but CMD.EXE thinks
bar\ is not quoted while foo \ and baz are. All of this
makes it a formidable task to reliably interpolate anything into a
shell=True command line on Windows, and Trio falls back on the
subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess] behavior: If you pass a sequence with
shell=True, it’s quoted in the same way as a sequence with
shell=False, and had better not contain any shell metacharacters
you weren’t planning on.

Further reading:

	https://stackoverflow.com/questions/30620876/how-to-properly-escape-filenames-in-windows-cmd-exe

	https://stackoverflow.com/questions/4094699/how-does-the-windows-command-interpreter-cmd-exe-parse-scripts

Signals

	
with trio.open_signal_receiver(*signals: Signals [https://docs.python.org/3/library/signal.html#signal.Signals] | int [https://docs.python.org/3/library/functions.html#int]) → Generator [https://docs.python.org/3/library/collections.abc.html#collections.abc.Generator][AsyncIterator [https://docs.python.org/3/library/collections.abc.html#collections.abc.AsyncIterator][int [https://docs.python.org/3/library/functions.html#int]], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]] as signal_aiter

	A context manager for catching signals.

Entering this context manager starts listening for the given signals and
returns an async iterator; exiting the context manager stops listening.

The async iterator blocks until a signal arrives, and then yields it.

Note that if you leave the with block while the iterator has
unextracted signals still pending inside it, then they will be
re-delivered using Python’s regular signal handling logic. This avoids a
race condition when signals arrives just before we exit the with
block.

	Parameters:

	signals – the signals to listen for.

	Raises:

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if no signals were provided.

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if you try to use this anywhere except Python’s main
 thread. (This is a Python limitation.)

Example

A common convention for Unix daemons is that they should reload their
configuration when they receive a SIGHUP. Here’s a sketch of what
that might look like using open_signal_receiver():

with trio.open_signal_receiver(signal.SIGHUP) as signal_aiter:
 async for signum in signal_aiter:
 assert signum == signal.SIGHUP
 reload_configuration()

Testing made easier with trio.testing

The trio.testing module provides various utilities to make it
easier to test Trio code. Unlike the other submodules in the
trio namespace, trio.testing is not automatically
imported when you do import trio; you must import trio.testing
explicitly.

Test harness integration

	
@trio.testing.trio_test

	

Time and timeouts

trio.testing.MockClock is a Clock with a
few tricks up its sleeve to help you efficiently test code involving
timeouts:

	By default, it starts at time 0, and clock time only advances when
you explicitly call jump(). This provides an
extremely controllable clock for testing.

	You can set rate to 1.0 if you want it to start
running in real time like a regular clock. You can stop and start
the clock within a test. You can set rate to 10.0
to make clock time pass at 10x real speed (so e.g. await
trio.sleep(10) returns after 1 second).

	But even more interestingly, you can set
autojump_threshold to zero or a small value, and
then it will watch the execution of the run loop, and any time
things have settled down and everyone’s waiting for a timeout, it
jumps the clock forward to that timeout. In many cases this allows
natural-looking code involving timeouts to be automatically run at
near full CPU utilization with no changes. (Thanks to fluxcapacitor [https://github.com/majek/fluxcapacitor] for this awesome idea.)

	And of course these can be mixed and matched at will.

Regardless of these shenanigans, from “inside” Trio the passage of time
still seems normal so long as you restrict yourself to Trio’s time
functions (see Time and clocks). Below is an example
demonstrating two different ways of making time pass quickly. Notice
how in both cases, the two tasks keep a consistent view of reality and
events happen in the expected order, despite being wildly divorced
from real time:

across-realtime.py

import time
import trio
import trio.testing

YEAR = 365 * 24 * 60 * 60 # seconds

async def task1():
 start = trio.current_time()

 print("task1: sleeping for 1 year")
 await trio.sleep(YEAR)

 duration = trio.current_time() - start
 print(f"task1: woke up; clock says I've slept {duration / YEAR} years")

 print("task1: sleeping for 1 year, 100 times")
 for _ in range(100):
 await trio.sleep(YEAR)

 duration = trio.current_time() - start
 print(f"task1: slept {duration / YEAR} years total")

async def task2():
 start = trio.current_time()

 print("task2: sleeping for 5 years")
 await trio.sleep(5 * YEAR)

 duration = trio.current_time() - start
 print(f"task2: woke up; clock says I've slept {duration / YEAR} years")

 print("task2: sleeping for 500 years")
 await trio.sleep(500 * YEAR)

 duration = trio.current_time() - start
 print(f"task2: slept {duration / YEAR} years total")

async def main():
 async with trio.open_nursery() as nursery:
 nursery.start_soon(task1)
 nursery.start_soon(task2)

def run_example(clock):
 real_start = time.perf_counter()
 trio.run(main, clock=clock)
 real_duration = time.perf_counter() - real_start
 print(f"Total real time elapsed: {real_duration} seconds")

print("Clock where time passes at 100 years per second:\n")
run_example(trio.testing.MockClock(rate=100 * YEAR))

print("\nClock where time automatically skips past the boring parts:\n")
run_example(trio.testing.MockClock(autojump_threshold=0))

Output:

Clock where time passes at 100 years per second:

task2: sleeping for 5 years
task1: sleeping for 1 year
task1: woke up; clock says I've slept 1.0365006048232317 years
task1: sleeping for 1 year, 100 times
task2: woke up; clock says I've slept 5.0572111969813704 years
task2: sleeping for 500 years
task1: slept 104.77677842136472 years total
task2: slept 505.25014589075 years total
Total real time elapsed: 5.053582429885864 seconds

Clock where time automatically skips past the boring parts:

task2: sleeping for 5 years
task1: sleeping for 1 year
task1: woke up; clock says I've slept 1.0 years
task1: sleeping for 1 year, 100 times
task2: woke up; clock says I've slept 5.0 years
task2: sleeping for 500 years
task1: slept 101.0 years total
task2: slept 505.0 years total
Total real time elapsed: 0.019298791885375977 seconds

	
class trio.testing.MockClock(rate: float [https://docs.python.org/3/library/functions.html#float] = 0.0, autojump_threshold: float [https://docs.python.org/3/library/functions.html#float] = inf)

	A user-controllable clock suitable for writing tests.

	Parameters:

	
	rate (float [https://docs.python.org/3/library/functions.html#float]) – the initial rate.

	autojump_threshold (float [https://docs.python.org/3/library/functions.html#float]) – the initial autojump_threshold.

	
rate

	How many seconds of clock time pass per second of real time. Default is
0.0, i.e. the clock only advances through manuals calls to jump()
or when the autojump_threshold is triggered. You can assign to
this attribute to change it.

	
autojump_threshold

	The clock keeps an eye on the run loop, and if at any point it detects
that all tasks have been blocked for this many real seconds (i.e.,
according to the actual clock, not this clock), then the clock
automatically jumps ahead to the run loop’s next scheduled
timeout. Default is math.inf [https://docs.python.org/3/library/math.html#math.inf], i.e., to never autojump. You can
assign to this attribute to change it.

Basically the idea is that if you have code or tests that use sleeps
and timeouts, you can use this to make it run much faster, totally
automatically. (At least, as long as those sleeps/timeouts are
happening inside Trio; if your test involves talking to external
service and waiting for it to timeout then obviously we can’t help you
there.)

You should set this to the smallest value that lets you reliably avoid
“false alarms” where some I/O is in flight (e.g. between two halves of
a socketpair) but the threshold gets triggered and time gets advanced
anyway. This will depend on the details of your tests and test
environment. If you aren’t doing any I/O (like in our sleeping example
above) then just set it to zero, and the clock will jump whenever all
tasks are blocked.

Note

If you use autojump_threshold and
wait_all_tasks_blocked at the same time, then you might wonder how
they interact, since they both cause things to happen after the run
loop goes idle for some time. The answer is:
wait_all_tasks_blocked takes priority. If there’s a task blocked
in wait_all_tasks_blocked, then the autojump feature treats that
as active task and does not jump the clock.

	
jump(seconds: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	Manually advance the clock by the given number of seconds.

	Parameters:

	seconds (float [https://docs.python.org/3/library/functions.html#float]) – the number of seconds to jump the clock forward.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if you try to pass a negative value for seconds.

Inter-task ordering

	
class trio.testing.Sequencer

	A convenience class for forcing code in different tasks to run in an
explicit linear order.

Instances of this class implement a __call__ method which returns an
async context manager. The idea is that you pass a sequence number to
__call__ to say where this block of code should go in the linear
sequence. Block 0 starts immediately, and then block N doesn’t start until
block N-1 has finished.

Example

An extremely elaborate way to print the numbers 0-5, in order:

async def worker1(seq):
 async with seq(0):
 print(0)
 async with seq(4):
 print(4)

async def worker2(seq):
 async with seq(2):
 print(2)
 async with seq(5):
 print(5)

async def worker3(seq):
 async with seq(1):
 print(1)
 async with seq(3):
 print(3)

async def main():
 seq = trio.testing.Sequencer()
 async with trio.open_nursery() as nursery:
 nursery.start_soon(worker1, seq)
 nursery.start_soon(worker2, seq)
 nursery.start_soon(worker3, seq)

	
await trio.testing.wait_all_tasks_blocked(cushion: float [https://docs.python.org/3/library/functions.html#float] = 0.0) → None [https://docs.python.org/3/library/constants.html#None]

	Block until there are no runnable tasks.

This is useful in testing code when you want to give other tasks a
chance to “settle down”. The calling task is blocked, and doesn’t wake
up until all other tasks are also blocked for at least cushion
seconds. (Setting a non-zero cushion is intended to handle cases
like two tasks talking to each other over a local socket, where we
want to ignore the potential brief moment between a send and receive
when all tasks are blocked.)

Note that cushion is measured in real time, not the Trio clock
time.

If there are multiple tasks blocked in wait_all_tasks_blocked(),
then the one with the shortest cushion is the one woken (and
this task becoming unblocked resets the timers for the remaining
tasks). If there are multiple tasks that have exactly the same
cushion, then all are woken.

You should also consider trio.testing.Sequencer, which
provides a more explicit way to control execution ordering within a
test, and will often produce more readable tests.

Example

Here’s an example of one way to test that Trio’s locks are fair: we
take the lock in the parent, start a child, wait for the child to be
blocked waiting for the lock (!), and then check that we can’t
release and immediately re-acquire the lock:

async def lock_taker(lock):
 await lock.acquire()
 lock.release()

async def test_lock_fairness():
 lock = trio.Lock()
 await lock.acquire()
 async with trio.open_nursery() as nursery:
 nursery.start_soon(lock_taker, lock)
 # child hasn't run yet, we have the lock
 assert lock.locked()
 assert lock._owner is trio.lowlevel.current_task()
 await trio.testing.wait_all_tasks_blocked()
 # now the child has run and is blocked on lock.acquire(), we
 # still have the lock
 assert lock.locked()
 assert lock._owner is trio.lowlevel.current_task()
 lock.release()
 try:
 # The child has a prior claim, so we can't have it
 lock.acquire_nowait()
 except trio.WouldBlock:
 assert lock._owner is not trio.lowlevel.current_task()
 print("PASS")
 else:
 print("FAIL")

Streams

Connecting to an in-process socket server

	
await trio.testing.open_stream_to_socket_listener(socket_listener: SocketListener) → SocketStream

	Connect to the given SocketListener.

This is particularly useful in tests when you want to let a server pick
its own port, and then connect to it:

listeners = await trio.open_tcp_listeners(0)
client = await trio.testing.open_stream_to_socket_listener(listeners[0])

	Parameters:

	socket_listener (SocketListener) – The
SocketListener to connect to.

	Returns:

	a stream connected to the given listener.

	Return type:

	SocketStream

Virtual, controllable streams

One particularly challenging problem when testing network protocols is
making sure that your implementation can handle data whose flow gets
broken up in weird ways and arrives with weird timings: localhost
connections tend to be much better behaved than real networks, so if
you only test on localhost then you might get bitten later. To help
you out, Trio provides some fully in-memory implementations of the
stream interfaces (see The abstract Stream API), that let you write
all kinds of interestingly evil tests.

There are a few pieces here, so here’s how they fit together:

memory_stream_pair() gives you a pair of connected,
bidirectional streams. It’s like socket.socketpair() [https://docs.python.org/3/library/socket.html#socket.socketpair], but
without any involvement from that pesky operating system and its
networking stack.

To build a bidirectional stream, memory_stream_pair() uses
two unidirectional streams. It gets these by calling
memory_stream_one_way_pair().

memory_stream_one_way_pair(), in turn, is implemented using the
low-ish level classes MemorySendStream and
MemoryReceiveStream. These are implementations of (you
guessed it) trio.abc.SendStream and
trio.abc.ReceiveStream that on their own, aren’t attached to
anything – “sending” and “receiving” just put data into and get data
out of a private internal buffer that each object owns. They also have
some interesting hooks you can set, that let you customize the
behavior of their methods. This is where you can insert the evil, if
you want it. memory_stream_one_way_pair() takes advantage of
these hooks in a relatively boring way: it just sets it up so that
when you call send_all, or when you close the send stream, then it
automatically triggers a call to memory_stream_pump(), which is
a convenience function that takes data out of a
MemorySendStream´s buffer and puts it into a
MemoryReceiveStream´s buffer. But that’s just the default –
you can replace this with whatever arbitrary behavior you want.

Trio also provides some specialized functions for testing completely
unbuffered streams: lockstep_stream_one_way_pair() and
lockstep_stream_pair(). These aren’t customizable, but they do
exhibit an extreme kind of behavior that’s good at catching out edge
cases in protocol implementations.

API details

	
class trio.testing.MemorySendStream(send_all_hook: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][object [https://docs.python.org/3/library/functions.html#object]]] | None [https://docs.python.org/3/library/constants.html#None] = None, wait_send_all_might_not_block_hook: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][object [https://docs.python.org/3/library/functions.html#object]]] | None [https://docs.python.org/3/library/constants.html#None] = None, close_hook: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], object [https://docs.python.org/3/library/functions.html#object]] | None [https://docs.python.org/3/library/constants.html#None] = None)

	An in-memory SendStream.

	Parameters:

	
	send_all_hook – An async function, or None. Called from
send_all(). Can do whatever you like.

	wait_send_all_might_not_block_hook – An async function, or None. Called
from wait_send_all_might_not_block(). Can do whatever you
like.

	close_hook – A synchronous function, or None. Called from close()
and aclose(). Can do whatever you like.

	
send_all_hook

	
wait_send_all_might_not_block_hook

	
close_hook

	All of these hooks are also exposed as attributes on the object, and
you can change them at any time.

	
await aclose() → None [https://docs.python.org/3/library/constants.html#None]

	Same as close(), but async.

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Marks this stream as closed, and then calls the close_hook
(if any).

	
await get_data(max_bytes: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	Retrieves data from the internal buffer, blocking if necessary.

	Parameters:

	max_bytes (int [https://docs.python.org/3/library/functions.html#int] or None) – The maximum amount of data to
retrieve. None (the default) means to retrieve all the data
that’s present (but still blocks until at least one byte is
available).

	Returns:

	If this stream has been closed, an empty bytearray. Otherwise, the
requested data.

	
get_data_nowait(max_bytes: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	Retrieves data from the internal buffer, but doesn’t block.

See get_data() for details.

	Raises:

	trio.WouldBlock – if no data is available to retrieve.

	
await send_all(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] | memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview]) → None [https://docs.python.org/3/library/constants.html#None]

	Places the given data into the object’s internal buffer, and then
calls the send_all_hook (if any).

	
await wait_send_all_might_not_block() → None [https://docs.python.org/3/library/constants.html#None]

	Calls the wait_send_all_might_not_block_hook (if any), and
then returns immediately.

	
class trio.testing.MemoryReceiveStream(receive_some_hook: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][object [https://docs.python.org/3/library/functions.html#object]]] | None [https://docs.python.org/3/library/constants.html#None] = None, close_hook: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], object [https://docs.python.org/3/library/functions.html#object]] | None [https://docs.python.org/3/library/constants.html#None] = None)

	An in-memory ReceiveStream.

	Parameters:

	
	receive_some_hook – An async function, or None. Called from
receive_some(). Can do whatever you like.

	close_hook – A synchronous function, or None. Called from close()
and aclose(). Can do whatever you like.

	
receive_some_hook

	
close_hook

	Both hooks are also exposed as attributes on the object, and you can
change them at any time.

	
await aclose() → None [https://docs.python.org/3/library/constants.html#None]

	Same as close(), but async.

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Discards any pending data from the internal buffer, and marks this
stream as closed.

	
put_data(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray] | memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview]) → None [https://docs.python.org/3/library/constants.html#None]

	Appends the given data to the internal buffer.

	
put_eof() → None [https://docs.python.org/3/library/constants.html#None]

	Adds an end-of-file marker to the internal buffer.

	
await receive_some(max_bytes: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	Calls the receive_some_hook (if any), and then retrieves
data from the internal buffer, blocking if necessary.

	
trio.testing.memory_stream_pump(memory_send_stream: MemorySendStream, memory_receive_stream: MemoryReceiveStream, *, max_bytes: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → bool [https://docs.python.org/3/library/functions.html#bool]

	Take data out of the given MemorySendStream’s internal buffer,
and put it into the given MemoryReceiveStream’s internal buffer.

	Parameters:

	
	memory_send_stream (MemorySendStream) – The stream to get data from.

	memory_receive_stream (MemoryReceiveStream) – The stream to put data into.

	max_bytes (int [https://docs.python.org/3/library/functions.html#int] or None) – The maximum amount of data to transfer in this
call, or None to transfer all available data.

	Returns:

	True if it successfully transferred some data, or False if there was no
data to transfer.

This is used to implement memory_stream_one_way_pair() and
memory_stream_pair(); see the latter’s docstring for an example
of how you might use it yourself.

	
trio.testing.memory_stream_one_way_pair() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][trio.testing.MemorySendStream, trio.testing.MemoryReceiveStream]

	Create a connected, pure-Python, unidirectional stream with infinite
buffering and flexible configuration options.

You can think of this as being a no-operating-system-involved
Trio-streamsified version of os.pipe() [https://docs.python.org/3/library/os.html#os.pipe] (except that os.pipe() [https://docs.python.org/3/library/os.html#os.pipe]
returns the streams in the wrong order – we follow the superior convention
that data flows from left to right).

	Returns:

	A tuple (MemorySendStream, MemoryReceiveStream), where
the MemorySendStream has its hooks set up so that it calls
memory_stream_pump() from its
send_all_hook and
close_hook.

The end result is that data automatically flows from the
MemorySendStream to the MemoryReceiveStream. But you’re
also free to rearrange things however you like. For example, you can
temporarily set the send_all_hook to None if you
want to simulate a stall in data transmission. Or see
memory_stream_pair() for a more elaborate example.

	
trio.testing.memory_stream_pair() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][trio.StapledStream[trio.testing.MemorySendStream, trio.testing.MemoryReceiveStream], trio.StapledStream[trio.testing.MemorySendStream, trio.testing.MemoryReceiveStream]]

	Create a connected, pure-Python, bidirectional stream with infinite
buffering and flexible configuration options.

This is a convenience function that creates two one-way streams using
memory_stream_one_way_pair(), and then uses
StapledStream to combine them into a single bidirectional
stream.

This is like a no-operating-system-involved, Trio-streamsified version of
socket.socketpair() [https://docs.python.org/3/library/socket.html#socket.socketpair].

	Returns:

	A pair of StapledStream objects that are connected so
that data automatically flows from one to the other in both directions.

After creating a stream pair, you can send data back and forth, which is
enough for simple tests:

left, right = memory_stream_pair()
await left.send_all(b"123")
assert await right.receive_some() == b"123"
await right.send_all(b"456")
assert await left.receive_some() == b"456"

But if you read the docs for StapledStream and
memory_stream_one_way_pair(), you’ll see that all the pieces
involved in wiring this up are public APIs, so you can adjust to suit the
requirements of your tests. For example, here’s how to tweak a stream so
that data flowing from left to right trickles in one byte at a time (but
data flowing from right to left proceeds at full speed):

left, right = memory_stream_pair()
async def trickle():
 # left is a StapledStream, and left.send_stream is a MemorySendStream
 # right is a StapledStream, and right.recv_stream is a MemoryReceiveStream
 while memory_stream_pump(left.send_stream, right.recv_stream, max_bytes=1):
 # Pause between each byte
 await trio.sleep(1)
Normally this send_all_hook calls memory_stream_pump directly without
passing in a max_bytes. We replace it with our custom version:
left.send_stream.send_all_hook = trickle

And here’s a simple test using our modified stream objects:

async def sender():
 await left.send_all(b"12345")
 await left.send_eof()

async def receiver():
 async for data in right:
 print(data)

async with trio.open_nursery() as nursery:
 nursery.start_soon(sender)
 nursery.start_soon(receiver)

By default, this will print b"12345" and then immediately exit; with
our trickle stream it instead sleeps 1 second, then prints b"1", then
sleeps 1 second, then prints b"2", etc.

Pro-tip: you can insert sleep calls (like in our example above) to
manipulate the flow of data across tasks… and then use
MockClock and its autojump_threshold
functionality to keep your test suite running quickly.

If you want to stress test a protocol implementation, one nice trick is to
use the random [https://docs.python.org/3/library/random.html#module-random] module (preferably with a fixed seed) to move random
numbers of bytes at a time, and insert random sleeps in between them. You
can also set up a custom receive_some_hook if
you want to manipulate things on the receiving side, and not just the
sending side.

	
trio.testing.lockstep_stream_one_way_pair() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][trio.abc.SendStream, trio.abc.ReceiveStream]

	Create a connected, pure Python, unidirectional stream where data flows
in lockstep.

	Returns:

	A tuple
(SendStream, ReceiveStream).

This stream has absolutely no buffering. Each call to
send_all() will block until all the given data
has been returned by a call to
receive_some().

This can be useful for testing flow control mechanisms in an extreme case,
or for setting up “clogged” streams to use with
check_one_way_stream() and friends.

In addition to fulfilling the SendStream and
ReceiveStream interfaces, the return objects
also have a synchronous close method.

	
trio.testing.lockstep_stream_pair() → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][trio.StapledStream[trio.abc.SendStream, trio.abc.ReceiveStream], trio.StapledStream[trio.abc.SendStream, trio.abc.ReceiveStream]]

	Create a connected, pure-Python, bidirectional stream where data flows
in lockstep.

	Returns:

	A tuple (StapledStream, StapledStream).

This is a convenience function that creates two one-way streams using
lockstep_stream_one_way_pair(), and then uses
StapledStream to combine them into a single bidirectional
stream.

Testing custom stream implementations

Trio also provides some functions to help you test your custom stream
implementations:

	
await trio.testing.check_one_way_stream(stream_maker: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][SendStream, ReceiveStream]]], clogged_stream_maker: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][SendStream, ReceiveStream]]] | None [https://docs.python.org/3/library/constants.html#None]) → None [https://docs.python.org/3/library/constants.html#None]

	Perform a number of generic tests on a custom one-way stream
implementation.

	Parameters:

	
	stream_maker – An async (!) function which returns a connected
(SendStream, ReceiveStream)
pair.

	clogged_stream_maker – Either None, or an async function similar to
stream_maker, but with the extra property that the returned stream
is in a state where send_all and
wait_send_all_might_not_block will block until receive_some
has been called. This allows for more thorough testing of some edge
cases, especially around wait_send_all_might_not_block.

	Raises:

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – if a test fails.

	
await trio.testing.check_two_way_stream(stream_maker: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Stream, Stream]]], clogged_stream_maker: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Stream, Stream]]] | None [https://docs.python.org/3/library/constants.html#None]) → None [https://docs.python.org/3/library/constants.html#None]

	Perform a number of generic tests on a custom two-way stream
implementation.

This is similar to check_one_way_stream(), except that the maker
functions are expected to return objects implementing the
Stream interface.

This function tests a superset of what check_one_way_stream()
checks – if you call this, then you don’t need to also call
check_one_way_stream().

	
await trio.testing.check_half_closeable_stream(stream_maker: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][HalfCloseableStream, HalfCloseableStream]]], clogged_stream_maker: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][HalfCloseableStream, HalfCloseableStream]]] | None [https://docs.python.org/3/library/constants.html#None]) → None [https://docs.python.org/3/library/constants.html#None]

	Perform a number of generic tests on a custom half-closeable stream
implementation.

This is similar to check_two_way_stream(), except that the maker
functions are expected to return objects that implement the
HalfCloseableStream interface.

This function tests a superset of what check_two_way_stream()
checks – if you call this, then you don’t need to also call
check_two_way_stream().

Virtual networking for testing

In the previous section you learned how to use virtual in-memory
streams to test protocols that are written against Trio’s
Stream abstraction. But what if you have more
complicated networking code – the kind of code that makes connections
to multiple hosts, or opens a listening socket, or sends UDP packets?

Trio doesn’t itself provide a virtual in-memory network implementation
for testing – but trio.socket module does provide the hooks you
need to write your own! And if you’re interested in helping implement
a reusable virtual network for testing, then please get in touch [https://github.com/python-trio/trio/issues/170].

Note that these APIs are actually in trio.socket and
trio.abc, but we document them here because they’re primarily
intended for testing.

	
trio.socket.set_custom_hostname_resolver(hostname_resolver: HostnameResolver | None [https://docs.python.org/3/library/constants.html#None]) → HostnameResolver | None [https://docs.python.org/3/library/constants.html#None]

	Set a custom hostname resolver.

By default, Trio’s getaddrinfo() and getnameinfo() functions
use the standard system resolver functions. This function allows you to
customize that behavior. The main intended use case is for testing, but it
might also be useful for using third-party resolvers like c-ares [https://c-ares.haxx.se/] (though be warned that these rarely make
perfect drop-in replacements for the system resolver). See
trio.abc.HostnameResolver for more details.

Setting a custom hostname resolver affects all future calls to
getaddrinfo() and getnameinfo() within the enclosing call to
trio.run(). All other hostname resolution in Trio is implemented in
terms of these functions.

Generally you should call this function just once, right at the beginning
of your program.

	Parameters:

	hostname_resolver (trio.abc.HostnameResolver or None) – The new custom
hostname resolver, or None to restore the default behavior.

	Returns:

	The previous hostname resolver (which may be None).

	
class trio.abc.HostnameResolver

	If you have a custom hostname resolver, then implementing
HostnameResolver allows you to register this to be used by Trio.

See trio.socket.set_custom_hostname_resolver().

	
abstractmethod await getaddrinfo(host: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None], port: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None], family: int [https://docs.python.org/3/library/functions.html#int] = 0, type: int [https://docs.python.org/3/library/functions.html#int] = 0, proto: int [https://docs.python.org/3/library/functions.html#int] = 0, flags: int [https://docs.python.org/3/library/functions.html#int] = 0) → list [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][socket.AddressFamily, socket.SocketKind, int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]]

	A custom implementation of getaddrinfo().

Called by trio.socket.getaddrinfo().

If host is given as a numeric IP address, then
getaddrinfo() may handle the request itself rather
than calling this method.

Any required IDNA encoding is handled before calling this function;
your implementation can assume that it will never see U-labels like
"café.com", and only needs to handle A-labels like
b"xn--caf-dma.com".

	
abstractmethod await getnameinfo(sockaddr: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], flags: int [https://docs.python.org/3/library/functions.html#int]) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	A custom implementation of getnameinfo().

Called by trio.socket.getnameinfo().

	
trio.socket.set_custom_socket_factory(socket_factory: SocketFactory | None [https://docs.python.org/3/library/constants.html#None]) → SocketFactory | None [https://docs.python.org/3/library/constants.html#None]

	Set a custom socket object factory.

This function allows you to replace Trio’s normal socket class with a
custom class. This is very useful for testing, and probably a bad idea in
any other circumstance. See trio.abc.HostnameResolver for more
details.

Setting a custom socket factory affects all future calls to socket()
within the enclosing call to trio.run().

Generally you should call this function just once, right at the beginning
of your program.

	Parameters:

	socket_factory (trio.abc.SocketFactory or None) – The new custom
socket factory, or None to restore the default behavior.

	Returns:

	The previous socket factory (which may be None).

	
class trio.abc.SocketFactory

	If you write a custom class implementing the Trio socket interface,
then you can use a SocketFactory to get Trio to use it.

See trio.socket.set_custom_socket_factory().

	
abstractmethod socket(family: socket.AddressFamily | int [https://docs.python.org/3/library/functions.html#int] = AddressFamily.AF_INET, type: socket.SocketKind | int [https://docs.python.org/3/library/functions.html#int] = SocketKind.SOCK_STREAM, proto: int [https://docs.python.org/3/library/functions.html#int] = 0) → SocketType

	Create and return a socket object.

Your socket object must inherit from trio.socket.SocketType,
which is an empty class whose only purpose is to “mark” which classes
should be considered valid Trio sockets.

Called by trio.socket.socket().

Note that unlike trio.socket.socket(), this does not take a
fileno= argument. If a fileno= is specified, then
trio.socket.socket() returns a regular Trio socket object
instead of calling this method.

Testing checkpoints

	
with trio.testing.assert_checkpoints() → AbstractContextManager [https://docs.python.org/3/library/contextlib.html#contextlib.AbstractContextManager][None [https://docs.python.org/3/library/constants.html#None]]

	Use as a context manager to check that the code inside the with
block either exits with an exception or executes at least one
checkpoint.

	Raises:

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – if no checkpoint was executed.

Example

Check that trio.sleep() is a checkpoint, even if it doesn’t
block:

with trio.testing.assert_checkpoints():
 await trio.sleep(0)

	
with trio.testing.assert_no_checkpoints() → AbstractContextManager [https://docs.python.org/3/library/contextlib.html#contextlib.AbstractContextManager][None [https://docs.python.org/3/library/constants.html#None]]

	Use as a context manager to check that the code inside the with
block does not execute any checkpoints.

	Raises:

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – if a checkpoint was executed.

Example

Synchronous code never contains any checkpoints, but we can double-check
that:

send_channel, receive_channel = trio.open_memory_channel(10)
with trio.testing.assert_no_checkpoints():
 send_channel.send_nowait(None)

Introspecting and extending Trio with trio.lowlevel

trio.lowlevel contains low-level APIs for introspecting and
extending Trio. If you’re writing ordinary, everyday code, then you
can ignore this module completely. But sometimes you need something a
bit lower level. Here are some examples of situations where you should
reach for trio.lowlevel:

	You want to implement a new synchronization primitive that Trio doesn’t (yet) provide, like a
reader-writer lock.

	You want to extract low-level metrics to monitor the health of your
application.

	You want to use a low-level operating system interface that Trio
doesn’t (yet) provide its own wrappers for, like watching a
filesystem directory for changes.

	You want to implement an interface for calling between Trio and
another event loop within the same process.

	You’re writing a debugger and want to visualize Trio’s task tree.

	You need to interoperate with a C library whose API exposes raw file
descriptors.

You don’t need to be scared of trio.lowlevel, as long as you
take proper precautions. These are real public APIs, with strictly
defined and carefully documented semantics. They’re the same tools we
use to implement all the nice high-level APIs in the trio
namespace. But, be careful. Some of those strict semantics have nasty
big pointy teeth [https://en.wikipedia.org/wiki/Rabbit_of_Caerbannog]. If you make a
mistake, Trio may not be able to handle it gracefully; conventions and
guarantees that are followed strictly in the rest of Trio do not
always apply. When you use this module, it’s your job to think about
how you’re going to handle the tricky cases so you can expose a
friendly Trio-style API to your users.

Debugging and instrumentation

Trio tries hard to provide useful hooks for debugging and
instrumentation. Some are documented above (the nursery introspection
attributes, trio.Lock.statistics(), etc.). Here are some more.

Global statistics

	
trio.lowlevel.current_statistics() → RunStatistics

	Returns an object containing run-loop-level debugging information:

	
class trio.lowlevel.RunStatistics

	An object containing run-loop-level debugging information.

Currently, the following fields are defined:

	tasks_living (int): The number of tasks that have been spawned
and not yet exited.

	tasks_runnable (int): The number of tasks that are currently
queued on the run queue (as opposed to blocked waiting for something
to happen).

	seconds_to_next_deadline (float): The time until the next
pending cancel scope deadline. May be negative if the deadline has
expired but we haven’t yet processed cancellations. May be
inf [https://docs.python.org/3/library/math.html#math.inf] if there are no pending deadlines.

	run_sync_soon_queue_size (int): The number of
unprocessed callbacks queued via
trio.lowlevel.TrioToken.run_sync_soon().

	io_statistics (object): Some statistics from Trio’s I/O
backend. This always has an attribute backend which is a string
naming which operating-system-specific I/O backend is in use; the
other attributes vary between backends.

The current clock

	
trio.lowlevel.current_clock() → Clock

	Returns the current Clock.

Instrument API

The instrument API provides a standard way to add custom
instrumentation to the run loop. Want to make a histogram of
scheduling latencies, log a stack trace of any task that blocks the
run loop for >50 ms, or measure what percentage of your process’s
running time is spent waiting for I/O? This is the place.

The general idea is that at any given moment, trio.run()
maintains a set of “instruments”, which are objects that implement the
trio.abc.Instrument interface. When an interesting event
happens, it loops over these instruments and notifies them by calling
an appropriate method. The tutorial has a simple example of
using this for tracing.

Since this hooks into Trio at a rather low level, you do have to be
careful. The callbacks are run synchronously, and in many cases if
they error out then there isn’t any plausible way to propagate this
exception (for instance, we might be deep in the guts of the exception
propagation machinery…). Therefore our current strategy [https://github.com/python-trio/trio/issues/47] for handling
exceptions raised by instruments is to (a) log an exception to the
"trio.abc.Instrument" logger, which by default prints a stack
trace to standard error and (b) disable the offending instrument.

You can register an initial list of instruments by passing them to
trio.run(). add_instrument() and
remove_instrument() let you add and remove instruments at
runtime.

	
trio.lowlevel.add_instrument(instrument: Instrument) → None [https://docs.python.org/3/library/constants.html#None]

	Start instrumenting the current run loop with the given instrument.

	Parameters:

	instrument (trio.abc.Instrument) – The instrument to activate.

If instrument is already active, does nothing.

	
trio.lowlevel.remove_instrument(instrument: Instrument) → None [https://docs.python.org/3/library/constants.html#None]

	Stop instrumenting the current run loop with the given instrument.

	Parameters:

	instrument (trio.abc.Instrument) – The instrument to de-activate.

	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – if the instrument is not currently active. This could
 occur either because you never added it, or because you added it
 and then it raised an unhandled exception and was automatically
 deactivated.

And here’s the interface to implement if you want to build your own
Instrument:

	
class trio.abc.Instrument

	The interface for run loop instrumentation.

Instruments don’t have to inherit from this abstract base class, and all
of these methods are optional. This class serves mostly as documentation.

	
after_io_wait(timeout: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	Called after handling pending I/O.

	Parameters:

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – The number of seconds we were willing to
wait. This much time may or may not have elapsed, depending on
whether any I/O was ready.

	
after_run() → None [https://docs.python.org/3/library/constants.html#None]

	Called just before trio.run() returns.

	
after_task_step(task: Task) → None [https://docs.python.org/3/library/constants.html#None]

	Called when we return to the main run loop after a task has yielded.

	Parameters:

	task (trio.lowlevel.Task) – The task that just ran.

	
before_io_wait(timeout: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	Called before blocking to wait for I/O readiness.

	Parameters:

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – The number of seconds we are willing to wait.

	
before_run() → None [https://docs.python.org/3/library/constants.html#None]

	Called at the beginning of trio.run().

	
before_task_step(task: Task) → None [https://docs.python.org/3/library/constants.html#None]

	Called immediately before we resume running the given task.

	Parameters:

	task (trio.lowlevel.Task) – The task that is about to run.

	
task_exited(task: Task) → None [https://docs.python.org/3/library/constants.html#None]

	Called when the given task exits.

	Parameters:

	task (trio.lowlevel.Task) – The finished task.

	
task_scheduled(task: Task) → None [https://docs.python.org/3/library/constants.html#None]

	Called when the given task becomes runnable.

It may still be some time before it actually runs, if there are other
runnable tasks ahead of it.

	Parameters:

	task (trio.lowlevel.Task) – The task that became runnable.

	
task_spawned(task: Task) → None [https://docs.python.org/3/library/constants.html#None]

	Called when the given task is created.

	Parameters:

	task (trio.lowlevel.Task) – The new task.

The tutorial has a fully-worked example of defining a custom instrument to log
Trio’s internal scheduling decisions.

Low-level process spawning

	
await trio.lowlevel.open_process(command: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | str [https://docs.python.org/3/library/stdtypes.html#str], *, stdin: int [https://docs.python.org/3/library/functions.html#int] | HasFileno | None [https://docs.python.org/3/library/constants.html#None] = None, stdout: int [https://docs.python.org/3/library/functions.html#int] | HasFileno | None [https://docs.python.org/3/library/constants.html#None] = None, stderr: int [https://docs.python.org/3/library/functions.html#int] | HasFileno | None [https://docs.python.org/3/library/constants.html#None] = None, **options: object [https://docs.python.org/3/library/functions.html#object]) → Process

	Execute a child program in a new process.

After construction, you can interact with the child process by writing data to its
stdin stream (a SendStream), reading data from its
stdout and/or stderr streams (both
ReceiveStreams), sending it signals using terminate,
kill, or send_signal, and waiting for it to exit
using wait. See trio.Process for details.

Each standard stream is only available if you specify that a pipe should be created
for it. For example, if you pass stdin=subprocess.PIPE, you can write to the
stdin stream, else stdin will be None.

Unlike trio.run_process, this function doesn’t do any kind of automatic
management of the child process. It’s up to you to implement whatever semantics you
want.

	Parameters:

	
	command (list [https://docs.python.org/3/library/stdtypes.html#list] or str [https://docs.python.org/3/library/stdtypes.html#str]) – The command to run. Typically this is a
sequence of strings such as ['ls', '-l', 'directory with spaces'],
where the first element names the executable to invoke and the other
elements specify its arguments. With shell=True in the
**options, or on Windows, command may alternatively
be a string, which will be parsed following platform-dependent
quoting rules.

	stdin – Specifies what the child process’s standard input
stream should connect to: output written by the parent
(subprocess.PIPE), nothing (subprocess.DEVNULL),
or an open file (pass a file descriptor or something whose
fileno method returns one). If stdin is unspecified,
the child process will have the same standard input stream
as its parent.

	stdout – Like stdin, but for the child process’s standard output
stream.

	stderr – Like stdin, but for the child process’s standard error
stream. An additional value subprocess.STDOUT is supported,
which causes the child’s standard output and standard error
messages to be intermixed on a single standard output stream,
attached to whatever the stdout option says to attach it to.

	**options – Other general subprocess options
are also accepted.

	Returns:

	A new trio.Process object.

	Raises:

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – if the process spawning fails, for example because the
 specified command could not be found.

Low-level I/O primitives

Different environments expose different low-level APIs for performing
async I/O. trio.lowlevel exposes these APIs in a relatively
direct way, so as to allow maximum power and flexibility for higher
level code. However, this means that the exact API provided may vary
depending on what system Trio is running on.

Universally available API

All environments provide the following functions:

	
await trio.lowlevel.wait_readable(obj)

	Block until the kernel reports that the given object is readable.

On Unix systems, obj must either be an integer file descriptor,
or else an object with a .fileno() method which returns an
integer file descriptor. Any kind of file descriptor can be passed,
though the exact semantics will depend on your kernel. For example,
this probably won’t do anything useful for on-disk files.

On Windows systems, obj must either be an integer SOCKET
handle, or else an object with a .fileno() method which returns
an integer SOCKET handle. File descriptors aren’t supported,
and neither are handles that refer to anything besides a
SOCKET.

	Raises:

	
	trio.BusyResourceError – if another task is already waiting for the given socket to
become readable.

	trio.ClosedResourceError – if another task calls notify_closing() while this
function is still working.

	
await trio.lowlevel.wait_writable(obj)

	Block until the kernel reports that the given object is writable.

See wait_readable for the definition of obj.

	Raises:

	
	trio.BusyResourceError – if another task is already waiting for the given socket to
become writable.

	trio.ClosedResourceError – if another task calls notify_closing() while this
function is still working.

	
trio.lowlevel.notify_closing(obj)

	Call this before closing a file descriptor (on Unix) or socket (on
Windows). This will cause any wait_readable or wait_writable
calls on the given object to immediately wake up and raise
ClosedResourceError.

This doesn’t actually close the object – you still have to do that
yourself afterwards. Also, you want to be careful to make sure no
new tasks start waiting on the object in between when you call this
and when it’s actually closed. So to close something properly, you
usually want to do these steps in order:

	Explicitly mark the object as closed, so that any new attempts
to use it will abort before they start.

	Call notify_closing to wake up any already-existing users.

	Actually close the object.

It’s also possible to do them in a different order if that’s more
convenient, but only if you make sure not to have any checkpoints in
between the steps. This way they all happen in a single atomic
step, so other tasks won’t be able to tell what order they happened
in anyway.

Unix-specific API

FdStream supports wrapping Unix files (such as a pipe or TTY) as
a stream.

If you have two different file descriptors for sending and receiving,
and want to bundle them together into a single bidirectional
Stream, then use trio.StapledStream:

bidirectional_stream = trio.StapledStream(
 trio.lowlevel.FdStream(write_fd),
 trio.lowlevel.FdStream(read_fd)
)

	
class trio.lowlevel.FdStream(fd: int [https://docs.python.org/3/library/functions.html#int])

	Bases: Stream

Represents a stream given the file descriptor to a pipe, TTY, etc.

fd must refer to a file that is open for reading and/or writing and
supports non-blocking I/O (pipes and TTYs will work, on-disk files probably
not). The returned stream takes ownership of the fd, so closing the stream
will close the fd too. As with os.fdopen [https://docs.python.org/3/library/os.html#os.fdopen], you should not directly use
an fd after you have wrapped it in a stream using this function.

To be used as a Trio stream, an open file must be placed in non-blocking
mode. Unfortunately, this impacts all I/O that goes through the
underlying open file, including I/O that uses a different
file descriptor than the one that was passed to Trio. If other threads
or processes are using file descriptors that are related through os.dup [https://docs.python.org/3/library/os.html#os.dup]
or inheritance across os.fork [https://docs.python.org/3/library/os.html#os.fork] to the one that Trio is using, they are
unlikely to be prepared to have non-blocking I/O semantics suddenly
thrust upon them. For example, you can use
FdStream(os.dup(sys.stdin.fileno())) to obtain a stream for reading
from standard input, but it is only safe to do so with heavy caveats: your
stdin must not be shared by any other processes, and you must not make any
calls to synchronous methods of sys.stdin [https://docs.python.org/3/library/sys.html#sys.stdin] until the stream returned by
FdStream is closed. See issue #174 [https://github.com/python-trio/trio/issues/174] for a discussion of the
challenges involved in relaxing this restriction.

	Parameters:

	fd (int [https://docs.python.org/3/library/functions.html#int]) – The fd to be wrapped.

	Returns:

	A new FdStream object.

Kqueue-specific API

TODO: these are implemented, but are currently more of a sketch than
anything real. See #26 [https://github.com/python-trio/trio/issues/26].

	
trio.lowlevel.current_kqueue()

	

	
await trio.lowlevel.wait_kevent(ident, filter, abort_func)

	

	
with trio.lowlevel.monitor_kevent(ident, filter) as queue

	

Windows-specific API

	
await trio.lowlevel.WaitForSingleObject(handle)

	Async and cancellable variant of WaitForSingleObject [https://msdn.microsoft.com/en-us/library/windows/desktop/ms687032(v=vs.85).aspx].
Windows only.

	Parameters:

	handle – A Win32 object handle, as a Python integer.

	Raises:

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – If the handle is invalid, e.g. when it is already closed.

TODO: these are implemented, but are currently more of a sketch than
anything real. See #26 [https://github.com/python-trio/trio/issues/26] and #52 [https://github.com/python-trio/trio/issues/52].

	
trio.lowlevel.register_with_iocp(handle)

	

	
await trio.lowlevel.wait_overlapped(handle, lpOverlapped)

	

	
trio.lowlevel.current_iocp()

	

	
with trio.lowlevel.monitor_completion_key() as queue

	

Global state: system tasks and run-local variables

	
class trio.lowlevel.RunVar(name: str [https://docs.python.org/3/library/stdtypes.html#str], default=...)

	The run-local variant of a context variable.

RunVar objects are similar to context variable objects,
except that they are shared across a single call to trio.run()
rather than a single task.

	
trio.lowlevel.spawn_system_task(async_fn: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], Awaitable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Awaitable][object [https://docs.python.org/3/library/functions.html#object]]], *args: object [https://docs.python.org/3/library/functions.html#object], name: object [https://docs.python.org/3/library/functions.html#object] = None, context: Context [https://docs.python.org/3/library/contextvars.html#contextvars.Context] | None [https://docs.python.org/3/library/constants.html#None] = None) → Task

	Spawn a “system” task.

System tasks have a few differences from regular tasks:

	They don’t need an explicit nursery; instead they go into the
internal “system nursery”.

	If a system task raises an exception, then it’s converted into a
TrioInternalError and all tasks are cancelled. If you
write a system task, you should be careful to make sure it doesn’t
crash.

	System tasks are automatically cancelled when the main task exits.

	By default, system tasks have KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] protection
enabled. If you want your task to be interruptible by control-C,
then you need to use disable_ki_protection() explicitly (and
come up with some plan for what to do with a
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt], given that system tasks aren’t allowed to
raise exceptions).

	System tasks do not inherit context variables from their creator.

Towards the end of a call to trio.run(), after the main
task and all system tasks have exited, the system nursery
becomes closed. At this point, new calls to
spawn_system_task() will raise RuntimeError("Nursery
is closed to new arrivals") instead of creating a system
task. It’s possible to encounter this state either in
a finally block in an async generator, or in a callback
passed to TrioToken.run_sync_soon() at the right moment.

	Parameters:

	
	async_fn – An async callable.

	args – Positional arguments for async_fn. If you want to pass
keyword arguments, use functools.partial() [https://docs.python.org/3/library/functools.html#functools.partial].

	name – The name for this task. Only used for debugging/introspection
(e.g. repr(task_obj)). If this isn’t a string,
spawn_system_task() will try to make it one. A common use
case is if you’re wrapping a function before spawning a new
task, you might pass the original function as the name= to
make debugging easier.

	context – An optional contextvars.Context object with context variables
to use for this task. You would normally get a copy of the current
context with context = contextvars.copy_context() and then you would
pass that context object here.

	Returns:

	the newly spawned task

	Return type:

	Task

Trio tokens

	
class trio.lowlevel.TrioToken

	An opaque object representing a single call to trio.run().

It has no public constructor; instead, see current_trio_token().

This object has two uses:

	It lets you re-enter the Trio run loop from external threads or signal
handlers. This is the low-level primitive that trio.to_thread()
and trio.from_thread use to communicate with worker threads, that
trio.open_signal_receiver uses to receive notifications about
signals, and so forth.

	Each call to trio.run() has exactly one associated
TrioToken object, so you can use it to identify a particular
call.

	
run_sync_soon(sync_fn: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], object [https://docs.python.org/3/library/functions.html#object]], *args: object [https://docs.python.org/3/library/functions.html#object], idempotent: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Schedule a call to sync_fn(*args) to occur in the context of a
Trio task.

This is safe to call from the main thread, from other threads, and
from signal handlers. This is the fundamental primitive used to
re-enter the Trio run loop from outside of it.

The call will happen “soon”, but there’s no guarantee about exactly
when, and no mechanism provided for finding out when it’s happened.
If you need this, you’ll have to build your own.

The call is effectively run as part of a system task (see
spawn_system_task()). In particular this means
that:

	KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] protection is enabled by default; if
you want sync_fn to be interruptible by control-C, then you
need to use disable_ki_protection()
explicitly.

	If sync_fn raises an exception, then it’s converted into a
TrioInternalError and all tasks are cancelled. You
should be careful that sync_fn doesn’t crash.

All calls with idempotent=False are processed in strict
first-in first-out order.

If idempotent=True, then sync_fn and args must be
hashable, and Trio will make a best-effort attempt to discard any
call submission which is equal to an already-pending call. Trio
will process these in first-in first-out order.

Any ordering guarantees apply separately to idempotent=False
and idempotent=True calls; there’s no rule for how calls in the
different categories are ordered with respect to each other.

	Raises:

	trio.RunFinishedError – if the associated call to trio.run()
has already exited. (Any call that doesn’t raise this error
is guaranteed to be fully processed before trio.run()
exits.)

	
trio.lowlevel.current_trio_token() → TrioToken

	Retrieve the TrioToken for the current call to
trio.run().

Spawning threads

	
trio.lowlevel.start_thread_soon(fn: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], RetT [https://docs.python.org/3/library/typing.html#typing.TypeVar]], deliver: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Outcome [https://outcome.readthedocs.io/en/latest/api.html#outcome.Outcome][RetT [https://docs.python.org/3/library/typing.html#typing.TypeVar]]], object [https://docs.python.org/3/library/functions.html#object]], name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Runs deliver(outcome.capture(fn)) in a worker thread.

Generally fn does some blocking work, and deliver delivers the
result back to whoever is interested.

This is a low-level, no-frills interface, very similar to using
threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread] to spawn a thread directly. The main difference is
that this function tries to reuse threads when possible, so it can be
a bit faster than threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread].

Worker threads have the daemon [https://docs.python.org/3/library/threading.html#threading.Thread.daemon] flag set, which means
that if your main thread exits, worker threads will automatically be
killed. If you want to make sure that your fn runs to completion, then
you should make sure that the main thread remains alive until deliver
is called.

It is safe to call this function simultaneously from multiple threads.

	Parameters:

	
	fn (sync function) – Performs arbitrary blocking work.

	deliver (sync function) – Takes the outcome.Outcome [https://outcome.readthedocs.io/en/latest/api.html#outcome.Outcome] of fn, and
delivers it. Must not block.

Because worker threads are cached and reused for multiple calls, neither
function should mutate thread-level state, like threading.local [https://docs.python.org/3/library/threading.html#threading.local] objects
– or if they do, they should be careful to revert their changes before
returning.

Note

The split between fn and deliver serves two purposes. First,
it’s convenient, since most callers need something like this anyway.

Second, it avoids a small race condition that could cause too many
threads to be spawned. Consider a program that wants to run several
jobs sequentially on a thread, so the main thread submits a job, waits
for it to finish, submits another job, etc. In theory, this program
should only need one worker thread. But what could happen is:

	Worker thread: First job finishes, and calls deliver.

	Main thread: receives notification that the job finished, and calls
start_thread_soon.

	Main thread: sees that no worker threads are marked idle, so spawns
a second worker thread.

	Original worker thread: marks itself as idle.

To avoid this, threads mark themselves as idle before calling
deliver.

Is this potential extra thread a major problem? Maybe not, but it’s
easy enough to avoid, and we figure that if the user is trying to
limit how many threads they’re using then it’s polite to respect that.

Safer KeyboardInterrupt handling

Trio’s handling of control-C is designed to balance usability and
safety. On the one hand, there are sensitive regions (like the core
scheduling loop) where it’s simply impossible to handle arbitrary
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] exceptions while maintaining our core
correctness invariants. On the other, if the user accidentally writes
an infinite loop, we do want to be able to break out of that. Our
solution is to install a default signal handler which checks whether
it’s safe to raise KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] at the place where the
signal is received. If so, then we do; otherwise, we schedule a
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] to be delivered to the main task at the next
available opportunity (similar to how Cancelled is
delivered).

So that’s great, but – how do we know whether we’re in one of the
sensitive parts of the program or not?

This is determined on a function-by-function basis. By default:

	The top-level function in regular user tasks is unprotected.

	The top-level function in system tasks is protected.

	If a function doesn’t specify otherwise, then it inherits the
protection state of its caller.

This means you only need to override the defaults at places where you
transition from protected code to unprotected code or vice-versa.

These transitions are accomplished using two function decorators:

	
@trio.lowlevel.disable_ki_protection

	Decorator that marks the given regular function, generator
function, async function, or async generator function as
unprotected against KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt], i.e., the code inside
this function can be rudely interrupted by
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] at any moment.

If you have multiple decorators on the same function, then this
should be at the bottom of the stack (closest to the actual
function).

An example of where you’d use this is in implementing something
like trio.from_thread.run(), which uses
TrioToken.run_sync_soon() to get into the Trio
thread. run_sync_soon() callbacks are run with
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] protection enabled, and
trio.from_thread.run() takes advantage of this to safely set up
the machinery for sending a response back to the original thread, but
then uses disable_ki_protection() when entering the
user-provided function.

	
@trio.lowlevel.enable_ki_protection

	Decorator that marks the given regular function, generator
function, async function, or async generator function as protected
against KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt], i.e., the code inside this
function won’t be rudely interrupted by
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt]. (Though if it contains any
checkpoints, then it can still receive
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] at those. This is considered a polite
interruption.)

Warning

Be very careful to only use this decorator on functions that you
know will either exit in bounded time, or else pass through a
checkpoint regularly. (Of course all of your functions should
have this property, but if you mess it up here then you won’t
even be able to use control-C to escape!)

If you have multiple decorators on the same function, then this
should be at the bottom of the stack (closest to the actual
function).

An example of where you’d use this is on the __exit__
implementation for something like a Lock, where a
poorly-timed KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] could leave the lock in an
inconsistent state and cause a deadlock.

	
trio.lowlevel.currently_ki_protected() → bool [https://docs.python.org/3/library/functions.html#bool]

	Check whether the calling code has KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] protection
enabled.

It’s surprisingly easy to think that one’s KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt]
protection is enabled when it isn’t, or vice-versa. This function tells
you what Trio thinks of the matter, which makes it useful for asserts
and unit tests.

	Returns:

	True if protection is enabled, and False otherwise.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Sleeping and waking

Wait queue abstraction

	
class trio.lowlevel.ParkingLot

	A fair wait queue with cancellation and requeueing.

This class encapsulates the tricky parts of implementing a wait
queue. It’s useful for implementing higher-level synchronization
primitives like queues and locks.

In addition to the methods below, you can use len(parking_lot) to get
the number of parked tasks, and if parking_lot: ... to check whether
there are any parked tasks.

	
await park() → None [https://docs.python.org/3/library/constants.html#None]

	Park the current task until woken by a call to unpark() or
unpark_all().

	
repark(new_lot: ParkingLot, *, count: int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] = 1) → None [https://docs.python.org/3/library/constants.html#None]

	Move parked tasks from one ParkingLot object to another.

This dequeues count tasks from one lot, and requeues them on
another, preserving order. For example:

async def parker(lot):
 print("sleeping")
 await lot.park()
 print("woken")

async def main():
 lot1 = trio.lowlevel.ParkingLot()
 lot2 = trio.lowlevel.ParkingLot()
 async with trio.open_nursery() as nursery:
 nursery.start_soon(parker, lot1)
 await trio.testing.wait_all_tasks_blocked()
 assert len(lot1) == 1
 assert len(lot2) == 0
 lot1.repark(lot2)
 assert len(lot1) == 0
 assert len(lot2) == 1
 # This wakes up the task that was originally parked in lot1
 lot2.unpark()

If there are fewer than count tasks parked, then reparks as many
tasks as are available and then returns successfully.

	Parameters:

	
	new_lot (ParkingLot) – the parking lot to move tasks to.

	count (int [https://docs.python.org/3/library/functions.html#int]|math.inf) – the number of tasks to move.

	
repark_all(new_lot: ParkingLot) → None [https://docs.python.org/3/library/constants.html#None]

	Move all parked tasks from one ParkingLot object to
another.

See repark() for details.

	
statistics() → ParkingLotStatistics

	Return an object containing debugging information.

Currently the following fields are defined:

	tasks_waiting: The number of tasks blocked on this lot’s
park() method.

	
unpark(*, count: int [https://docs.python.org/3/library/functions.html#int] | float [https://docs.python.org/3/library/functions.html#float] = 1) → list [https://docs.python.org/3/library/stdtypes.html#list][Task]

	Unpark one or more tasks.

This wakes up count tasks that are blocked in park(). If
there are fewer than count tasks parked, then wakes as many tasks
are available and then returns successfully.

	Parameters:

	count (int [https://docs.python.org/3/library/functions.html#int] | math.inf) – the number of tasks to unpark.

	
unpark_all() → list [https://docs.python.org/3/library/stdtypes.html#list][Task]

	Unpark all parked tasks.

	
class trio.lowlevel.ParkingLotStatistics(tasks_waiting: int [https://docs.python.org/3/library/functions.html#int])

	An object containing debugging information for a ParkingLot.

Currently, the following fields are defined:

	tasks_waiting (int): The number of tasks blocked on this lot’s
trio.lowlevel.ParkingLot.park() method.

Low-level checkpoint functions

	
await trio.lowlevel.checkpoint() → None [https://docs.python.org/3/library/constants.html#None]

	A pure checkpoint.

This checks for cancellation and allows other tasks to be scheduled,
without otherwise blocking.

Note that the scheduler has the option of ignoring this and continuing to
run the current task if it decides this is appropriate (e.g. for increased
efficiency).

Equivalent to await trio.sleep(0) (which is implemented by calling
checkpoint().)

The next two functions are used together to make up a checkpoint:

	
await trio.lowlevel.checkpoint_if_cancelled() → None [https://docs.python.org/3/library/constants.html#None]

	Issue a checkpoint if the calling context has been
cancelled.

Equivalent to (but potentially more efficient than):

if trio.current_effective_deadline() == -inf:
 await trio.lowlevel.checkpoint()

This is either a no-op, or else it allow other tasks to be scheduled and
then raises trio.Cancelled.

Typically used together with cancel_shielded_checkpoint().

	
await trio.lowlevel.cancel_shielded_checkpoint() → None [https://docs.python.org/3/library/constants.html#None]

	Introduce a schedule point, but not a cancel point.

This is not a checkpoint, but it is half of a
checkpoint, and when combined with checkpoint_if_cancelled() it can
make a full checkpoint.

Equivalent to (but potentially more efficient than):

with trio.CancelScope(shield=True):
 await trio.lowlevel.checkpoint()

These are commonly used in cases where you have an operation that
might-or-might-not block, and you want to implement Trio’s standard
checkpoint semantics. Example:

async def operation_that_maybe_blocks():
 await checkpoint_if_cancelled()
 try:
 ret = attempt_operation()
 except BlockingIOError:
 # need to block and then retry, which we do below
 pass
 else:
 # operation succeeded, finish the checkpoint then return
 await cancel_shielded_checkpoint()
 return ret
 while True:
 await wait_for_operation_to_be_ready()
 try:
 return attempt_operation()
 except BlockingIOError:
 pass

This logic is a bit convoluted, but accomplishes all of the following:

	Every successful execution path passes through a checkpoint (assuming that
wait_for_operation_to_be_ready is an unconditional checkpoint)

	Our cancellation semantics say that
Cancelled should only be raised if the operation didn’t
happen. Using cancel_shielded_checkpoint() on the early-exit
branch accomplishes this.

	On the path where we do end up blocking, we don’t pass through any
schedule points before that, which avoids some unnecessary work.

	Avoids implicitly chaining the BlockingIOError [https://docs.python.org/3/library/exceptions.html#BlockingIOError] with any
errors raised by attempt_operation or
wait_for_operation_to_be_ready, by keeping the while True:
loop outside of the except BlockingIOError: block.

These functions can also be useful in other situations. For example,
when trio.to_thread.run_sync() schedules some work to run in a
worker thread, it blocks until the work is finished (so it’s a
schedule point), but by default it doesn’t allow cancellation. So to
make sure that the call always acts as a checkpoint, it calls
checkpoint_if_cancelled() before starting the thread.

Low-level blocking

	
await trio.lowlevel.wait_task_rescheduled(abort_func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], NoReturn [https://docs.python.org/3/library/typing.html#typing.NoReturn]]], Abort]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Put the current task to sleep, with cancellation support.

This is the lowest-level API for blocking in Trio. Every time a
Task blocks, it does so by calling this function
(usually indirectly via some higher-level API).

This is a tricky interface with no guard rails. If you can use
ParkingLot or the built-in I/O wait functions instead, then you
should.

Generally the way it works is that before calling this function, you make
arrangements for “someone” to call reschedule() on the current task
at some later point.

Then you call wait_task_rescheduled(), passing in abort_func, an
“abort callback”.

(Terminology: in Trio, “aborting” is the process of attempting to
interrupt a blocked task to deliver a cancellation.)

There are two possibilities for what happens next:

	“Someone” calls reschedule() on the current task, and
wait_task_rescheduled() returns or raises whatever value or error
was passed to reschedule().

	The call’s context transitions to a cancelled state (e.g. due to a
timeout expiring). When this happens, the abort_func is called. Its
interface looks like:

def abort_func(raise_cancel):
 ...
 return trio.lowlevel.Abort.SUCCEEDED # or FAILED

It should attempt to clean up any state associated with this call, and
in particular, arrange that reschedule() will not be called
later. If (and only if!) it is successful, then it should return
Abort.SUCCEEDED, in which case the task will automatically be
rescheduled with an appropriate Cancelled error.

Otherwise, it should return Abort.FAILED. This means that the
task can’t be cancelled at this time, and still has to make sure that
“someone” eventually calls reschedule().

At that point there are again two possibilities. You can simply ignore
the cancellation altogether: wait for the operation to complete and
then reschedule and continue as normal. (For example, this is what
trio.to_thread.run_sync() does if cancellation is disabled.)
The other possibility is that the abort_func does succeed in
cancelling the operation, but for some reason isn’t able to report that
right away. (Example: on Windows, it’s possible to request that an
async (“overlapped”) I/O operation be cancelled, but this request is
also asynchronous – you don’t find out until later whether the
operation was actually cancelled or not.) To report a delayed
cancellation, then you should reschedule the task yourself, and call
the raise_cancel callback passed to abort_func to raise a
Cancelled (or possibly KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt]) exception
into this task. Either of the approaches sketched below can work:

Option 1:
Catch the exception from raise_cancel and inject it into the task.
(This is what Trio does automatically for you if you return
Abort.SUCCEEDED.)
trio.lowlevel.reschedule(task, outcome.capture(raise_cancel))

Option 2:
wait to be woken by "someone", and then decide whether to raise
the error from inside the task.
outer_raise_cancel = None
def abort(inner_raise_cancel):
 nonlocal outer_raise_cancel
 outer_raise_cancel = inner_raise_cancel
 TRY_TO_CANCEL_OPERATION()
 return trio.lowlevel.Abort.FAILED
await wait_task_rescheduled(abort)
if OPERATION_WAS_SUCCESSFULLY_CANCELLED:
 # raises the error
 outer_raise_cancel()

In any case it’s guaranteed that we only call the abort_func at most
once per call to wait_task_rescheduled().

Sometimes, it’s useful to be able to share some mutable sleep-related data
between the sleeping task, the abort function, and the waking task. You
can use the sleeping task’s custom_sleep_data attribute to
store this data, and Trio won’t touch it, except to make sure that it gets
cleared when the task is rescheduled.

Warning

If your abort_func raises an error, or returns any value other than
Abort.SUCCEEDED or Abort.FAILED, then Trio will crash
violently. Be careful! Similarly, it is entirely possible to deadlock a
Trio program by failing to reschedule a blocked task, or cause havoc by
calling reschedule() too many times. Remember what we said up
above about how you should use a higher-level API if at all possible?

	
class trio.lowlevel.Abort(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum] used as the return value from abort functions.

See wait_task_rescheduled() for details.

	
SUCCEEDED

	
FAILED

	

	
trio.lowlevel.reschedule(task: ~trio.lowlevel.Task, next_send: ~outcome.Outcome[~typing.Any] = <object object>) → None [https://docs.python.org/3/library/constants.html#None]

	Reschedule the given task with the given
outcome.Outcome [https://outcome.readthedocs.io/en/latest/api.html#outcome.Outcome].

See wait_task_rescheduled() for the gory details.

There must be exactly one call to reschedule() for every call to
wait_task_rescheduled(). (And when counting, keep in mind that
returning Abort.SUCCEEDED from an abort callback is equivalent
to calling reschedule() once.)

	Parameters:

	
	task (trio.lowlevel.Task) – the task to be rescheduled. Must be blocked
in a call to wait_task_rescheduled().

	next_send (outcome.Outcome [https://outcome.readthedocs.io/en/latest/api.html#outcome.Outcome]) – the value (or error) to return (or
raise) from wait_task_rescheduled().

Here’s an example lock class implemented using
wait_task_rescheduled() directly. This implementation has a
number of flaws, including lack of fairness, O(n) cancellation,
missing error checking, failure to insert a checkpoint on the
non-blocking path, etc. If you really want to implement your own lock,
then you should study the implementation of trio.Lock and use
ParkingLot, which handles some of these issues for you. But
this does serve to illustrate the basic structure of the
wait_task_rescheduled() API:

class NotVeryGoodLock:
 def __init__(self):
 self._blocked_tasks = collections.deque()
 self._held = False

 async def acquire(self):
 # We might have to try several times to acquire the lock.
 while self._held:
 # Someone else has the lock, so we have to wait.
 task = trio.lowlevel.current_task()
 self._blocked_tasks.append(task)
 def abort_fn(_):
 self._blocked_tasks.remove(task)
 return trio.lowlevel.Abort.SUCCEEDED
 await trio.lowlevel.wait_task_rescheduled(abort_fn)
 # At this point the lock was released -- but someone else
 # might have swooped in and taken it again before we
 # woke up. So we loop around to check the 'while' condition
 # again.
 # if we reach this point, it means that the 'while' condition
 # has just failed, so we know no-one is holding the lock, and
 # we can take it.
 self._held = True

 def release(self):
 self._held = False
 if self._blocked_tasks:
 woken_task = self._blocked_tasks.popleft()
 trio.lowlevel.reschedule(woken_task)

Task API

	
trio.lowlevel.current_root_task()

	Returns the current root Task.

This is the task that is the ultimate parent of all other tasks.

	
trio.lowlevel.current_task()

	Return the Task object representing the current task.

	Returns:

	the Task that called current_task().

	Return type:

	Task

	
class trio.lowlevel.Task

	A Task object represents a concurrent “thread” of
execution. It has no public constructor; Trio internally creates a
Task object for each call to nursery.start(...) or
nursery.start_soon(...).

Its public members are mostly useful for introspection and
debugging:

	
name

	String containing this Task's name. Usually the name
of the function this Task is running, but can be
overridden by passing name= to start or start_soon.

	
coro

	This task’s coroutine object.

	
for ... in iter_await_frames() → Iterator [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][types.FrameType, int [https://docs.python.org/3/library/functions.html#int]]]

	Iterates recursively over the coroutine-like objects this
task is waiting on, yielding the frame and line number at each
frame.

This is similar to traceback.walk_stack [https://docs.python.org/3/library/traceback.html#traceback.walk_stack] in a synchronous
context. Note that traceback.walk_stack [https://docs.python.org/3/library/traceback.html#traceback.walk_stack] returns frames from
the bottom of the call stack to the top, while this function
starts from Task.coro and works it
way down.

Example usage: extracting a stack trace:

import traceback

def print_stack_for_task(task):
 ss = traceback.StackSummary.extract(task.iter_await_frames())
 print("".join(ss.format()))

	
context

	This task’s contextvars.Context [https://docs.python.org/3/library/contextvars.html#contextvars.Context] object.

	
parent_nursery

	The nursery this task is inside (or None if this is the “init”
task).

Example use case: drawing a visualization of the task tree in a
debugger.

	
eventual_parent_nursery

	The nursery this task will be inside after it calls
task_status.started().

If this task has already called started(), or if it was not
spawned using nursery.start(), then
its eventual_parent_nursery is None.

	
child_nurseries

	The nurseries this task contains.

This is a list, with outer nurseries before inner nurseries.

	
custom_sleep_data

	Trio doesn’t assign this variable any meaning, except that it
sets it to None whenever a task is rescheduled. It can be
used to share data between the different tasks involved in
putting a task to sleep and then waking it up again. (See
wait_task_rescheduled() for details.)

Using “guest mode” to run Trio on top of other event loops

What is “guest mode”?

An event loop acts as a central coordinator to manage all the IO
happening in your program. Normally, that means that your application
has to pick one event loop, and use it for everything. But what if you
like Trio, but also need to use a framework like Qt [https://en.wikipedia.org/wiki/Qt_(software)] or PyGame [https://www.pygame.org/] that has its own event loop? Then you
need some way to run both event loops at once.

It is possible to combine event loops, but the standard approaches all
have significant downsides:

	Polling: this is where you use a busy-loop [https://en.wikipedia.org/wiki/Busy_waiting] to manually check
for IO on both event loops many times per second. This adds latency,
and wastes CPU time and electricity.

	Pluggable IO backends: this is where you reimplement one of the
event loop APIs on top of the other, so you effectively end up with
just one event loop. This requires a significant amount of work for
each pair of event loops you want to integrate, and different
backends inevitably end up with inconsistent behavior, forcing users
to program against the least-common-denominator. And if the two
event loops expose different feature sets, it may not even be
possible to implement one in terms of the other.

	Running the two event loops in separate threads: This works, but
most event loop APIs aren’t thread-safe, so in this approach you
need to keep careful track of which code runs on which event loop,
and remember to use explicit inter-thread messaging whenever you
interact with the other loop – or else risk obscure race conditions
and data corruption.

That’s why Trio offers a fourth option: guest mode. Guest mode
lets you execute trio.run on top of some other “host” event loop,
like Qt. Its advantages are:

	Efficiency: guest mode is event-driven instead of using a busy-loop,
so it has low latency and doesn’t waste electricity.

	No need to think about threads: your Trio code runs in the same
thread as the host event loop, so you can freely call sync Trio APIs
from the host, and call sync host APIs from Trio. For example, if
you’re making a GUI app with Qt as the host loop, then making a
cancel button [https://doc.qt.io/qt-5/qpushbutton.html] and
connecting it to a trio.CancelScope is as easy as writing:

Trio code can create Qt objects without any special ceremony...
my_cancel_button = QPushButton("Cancel")
...and Qt can call back to Trio just as easily
my_cancel_button.clicked.connect(my_cancel_scope.cancel)

(For async APIs, it’s not that simple, but you can use sync APIs to
build explicit bridges between the two worlds, e.g. by passing async
functions and their results back and forth through queues.)

	Consistent behavior: guest mode uses the same code as regular Trio:
the same scheduler, same IO code, same everything. So you get the
full feature set and everything acts the way you expect.

	Simple integration and broad compatibility: pretty much every event
loop offers some threadsafe “schedule a callback” operation, and
that’s all you need to use it as a host loop.

Really? How is that possible?

Note

You can use guest mode without reading this section. It’s included
for those who enjoy understanding how things work.

All event loops have the same basic structure. They loop through two
operations, over and over:

	Wait for the operating system to notify them that something
interesting has happened, like data arriving on a socket or a
timeout passing. They do this by invoking a platform-specific
sleep_until_something_happens() system call – select,
epoll, kqueue, GetQueuedCompletionEvents, etc.

	Run all the user tasks that care about whatever happened, then go
back to step 1.

The problem here is step 1. Two different event loops on the same
thread can take turns running user tasks in step 2, but when they’re
idle and nothing is happening, they can’t both invoke their own
sleep_until_something_happens() function at the same time.

The “polling” and “pluggable backend” strategies solve this by hacking
the loops so both step 1s can run at the same time in the same thread.
Keeping everything in one thread is great for step 2, but the step 1
hacks create problems.

The “separate threads” strategy solves this by moving both steps into
separate threads. This makes step 1 work, but the downside is that now
the user tasks in step 2 are running separate threads as well, so
users are forced to deal with inter-thread coordination.

The idea behind guest mode is to combine the best parts of each
approach: we move Trio’s step 1 into a separate worker thread, while
keeping Trio’s step 2 in the main host thread. This way, when the
application is idle, both event loops do their
sleep_until_something_happens() at the same time in their own
threads. But when the app wakes up and your code is actually running,
it all happens in a single thread. The threading trickiness is all
handled transparently inside Trio.

Concretely, we unroll Trio’s internal event loop into a chain of
callbacks, and as each callback finishes, it schedules the next
callback onto the host loop or a worker thread as appropriate. So the
only thing the host loop has to provide is a way to schedule a
callback onto the main thread from a worker thread.

Coordinating between Trio and the host loop does add some overhead.
The main cost is switching in and out of the background thread, since
this requires cross-thread messaging. This is cheap (on the order of a
few microseconds, assuming your host loop is implemented efficiently),
but it’s not free.

But, there’s a nice optimization we can make: we only need the
thread when our sleep_until_something_happens() call actually
sleeps, that is, when the Trio part of your program is idle and has
nothing to do. So before we switch into the worker thread, we
double-check whether we’re idle, and if not, then we skip the worker
thread and jump directly to step 2. This means that your app only pays
the extra thread-switching penalty at moments when it would otherwise
be sleeping, so it should have minimal effect on your app’s overall
performance.

The total overhead will depend on your host loop, your platform, your
application, etc. But we expect that in most cases, apps running in
guest mode should only be 5-10% slower than the same code using
trio.run. If you find that’s not true for your app, then please let
us know and we’ll see if we can fix it!

Implementing guest mode for your favorite event loop

Let’s walk through what you need to do to integrate Trio’s guest mode
with your favorite event loop. Treat this section like a checklist.

Getting started: The first step is to get something basic working.
Here’s a minimal example of running Trio on top of asyncio, that you
can use as a model:

import asyncio, trio

A tiny Trio program
async def trio_main():
 for _ in range(5):
 print("Hello from Trio!")
 # This is inside Trio, so we have to use Trio APIs
 await trio.sleep(1)
 return "trio done!"

The code to run it as a guest inside asyncio
async def asyncio_main():
 asyncio_loop = asyncio.get_running_loop()

 def run_sync_soon_threadsafe(fn):
 asyncio_loop.call_soon_threadsafe(fn)

 def done_callback(trio_main_outcome):
 print(f"Trio program ended with: {trio_main_outcome}")

 # This is where the magic happens:
 trio.lowlevel.start_guest_run(
 trio_main,
 run_sync_soon_threadsafe=run_sync_soon_threadsafe,
 done_callback=done_callback,
)

 # Let the host loop run for a while to give trio_main time to
 # finish. (WARNING: This is a hack. See below for better
 # approaches.)
 #
 # This function is in asyncio, so we have to use asyncio APIs.
 await asyncio.sleep(10)

asyncio.run(asyncio_main())

You can see we’re using asyncio-specific APIs to start up a loop, and
then we call trio.lowlevel.start_guest_run. This function is very
similar to trio.run, and takes all the same arguments. But it has
two differences:

First, instead of blocking until trio_main has finished, it
schedules trio_main to start running on top of the host loop, and
then returns immediately. So trio_main is running in the
background – that’s why we have to sleep and give it time to finish.

And second, it requires two extra keyword arguments:
run_sync_soon_threadsafe, and done_callback.

For run_sync_soon_threadsafe, we need a function that takes a
synchronous callback, and schedules it to run on your host loop. And
this function needs to be “threadsafe” in the sense that you can
safely call it from any thread. So you need to figure out how to write
a function that does that using your host loop’s API. For asyncio,
this is easy because call_soon_threadsafe [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.call_soon_threadsafe] does exactly
what we need; for your loop, it might be more or less complicated.

For done_callback, you pass in a function that Trio will
automatically invoke when the Trio run finishes, so you know it’s done
and what happened. For this basic starting version, we just print the
result; in the next section we’ll discuss better alternatives.

At this stage you should be able to run a simple Trio program inside
your host loop. Now we’ll turn that prototype into something solid.

Loop lifetimes: One of the trickiest things in most event loops is
shutting down correctly. And having two event loops makes this even
harder!

If you can, we recommend following this pattern:

	Start up your host loop

	Immediately call start_guest_run to start Trio

	When Trio finishes and your done_callback is invoked, shut down
the host loop

	Make sure that nothing else shuts down your host loop

This way, your two event loops have the same lifetime, and your
program automatically exits when your Trio function finishes.

Here’s how we’d extend our asyncio example to implement this pattern:

Improved version, that shuts down properly after Trio finishes
async def asyncio_main():
 asyncio_loop = asyncio.get_running_loop()

 def run_sync_soon_threadsafe(fn):
 asyncio_loop.call_soon_threadsafe(fn)

 # Revised 'done' callback: set a Future
 done_fut = asyncio_loop.create_future()
 def done_callback(trio_main_outcome):
 done_fut.set_result(trio_main_outcome)

 trio.lowlevel.start_guest_run(
 trio_main,
 run_sync_soon_threadsafe=run_sync_soon_threadsafe,
 done_callback=done_callback,
)

 # Wait for the guest run to finish
 trio_main_outcome = await done_fut
 # Pass through the return value or exception from the guest run
 return trio_main_outcome.unwrap()

And then you can encapsulate all this machinery in a utility function
that exposes a trio.run-like API, but runs both loops together:

def trio_run_with_asyncio(trio_main, *args, **trio_run_kwargs):
 async def asyncio_main():
 # same as above
 ...

 return asyncio.run(asyncio_main())

Technically, it is possible to use other patterns. But there are some
important limitations you have to respect:

	You must let the Trio program run to completion. Many event
loops let you stop the event loop at any point, and any pending
callbacks/tasks/etc. just… don’t run. Trio follows a more
structured system, where you can cancel things, but the code always
runs to completion, so finally blocks run, resources are cleaned
up, etc. If you stop your host loop early, before the
done_callback is invoked, then that cuts off the Trio run in the
middle without a chance to clean up. This can leave your code in an
inconsistent state, and will definitely leave Trio’s internals in an
inconsistent state, which will cause errors if you try to use Trio
again in that thread.

Some programs need to be able to quit at any time, for example in
response to a GUI window being closed or a user selecting a “Quit”
from a menu. In these cases, we recommend wrapping your whole
program in a trio.CancelScope, and cancelling it when you want to
quit.

	Each host loop can only have one start_guest_run at a time. If you
try to start a second one, you’ll get an error. If you need to run
multiple Trio functions at the same time, then start up a single
Trio run, open a nursery, and then start your functions as child
tasks in that nursery.

	Unless you or your host loop register a handler for signal.SIGINT [https://docs.python.org/3/library/signal.html#signal.SIGINT]
before starting Trio (this is not common), then Trio will take over
delivery of KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt]s. And since Trio can’t tell which
host code is safe to interrupt, it will only deliver
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] into the Trio part of your code. This is fine if
your program is set up to exit when the Trio part exits, because the
KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] will propagate out of Trio and then trigger the
shutdown of your host loop, which is just what you want.

Given these constraints, we think the simplest approach is to always
start and stop the two loops together.

Signal management: “Signals” [https://en.wikipedia.org/wiki/Signal_(IPC)] are a low-level
inter-process communication primitive. When you hit control-C to kill
a program, that uses a signal. Signal handling in Python has a lot of
moving parts [https://vorpus.org/blog/control-c-handling-in-python-and-trio/].
One of those parts is signal.set_wakeup_fd [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd], which event loops use to
make sure that they wake up when a signal arrives so they can respond
to it. (If you’ve ever had an event loop ignore you when you hit
control-C, it was probably because they weren’t using
signal.set_wakeup_fd [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd] correctly.)

But, only one event loop can use signal.set_wakeup_fd [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd] at a time. And
in guest mode that can cause problems: Trio and the host loop might
start fighting over who’s using signal.set_wakeup_fd [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd].

Some event loops, like asyncio, won’t work correctly unless they win
this fight. Fortunately, Trio is a little less picky: as long as
someone makes sure that the program wakes up when a signal arrives,
it should work correctly. So if your host loop wants
signal.set_wakeup_fd [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd], then you should disable Trio’s
signal.set_wakeup_fd [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd] support, and then both loops will work
correctly.

On the other hand, if your host loop doesn’t use
signal.set_wakeup_fd [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd], then the only way to make everything work
correctly is to enable Trio’s signal.set_wakeup_fd [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd] support.

By default, Trio assumes that your host loop doesn’t use
signal.set_wakeup_fd [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd]. It does try to detect when this creates a
conflict with the host loop, and print a warning – but unfortunately,
by the time it detects it, the damage has already been done. So if
you’re getting this warning, then you should disable Trio’s
signal.set_wakeup_fd [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd] support by passing
host_uses_signal_set_wakeup_fd=True to start_guest_run.

If you aren’t seeing any warnings with your initial prototype, you’re
probably fine. But the only way to be certain is to check your host
loop’s source. For example, asyncio may or may not use
signal.set_wakeup_fd [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd] depending on the Python version and operating
system.

A small optimization: Finally, consider a small optimization. Some
event loops offer two versions of their “call this function soon” API:
one that can be used from any thread, and one that can only be used
from the event loop thread, with the latter being cheaper. For
example, asyncio has both call_soon_threadsafe [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.call_soon_threadsafe] and
call_soon [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.call_soon].

If you have a loop like this, then you can also pass a
run_sync_soon_not_threadsafe=... kwarg to start_guest_run, and
Trio will automatically use it when appropriate.

If your loop doesn’t have a split like this, then don’t worry about
it; run_sync_soon_not_threadsafe= is optional. (If it’s not
passed, then Trio will just use your threadsafe version in all cases.)

That’s it! If you’ve followed all these steps, you should now have
a cleanly-integrated hybrid event loop. Go make some cool
GUIs/games/whatever!

Limitations

In general, almost all Trio features should work in guest mode. The
exception is features which rely on Trio having a complete picture of
everything that your program is doing, since obviously, it can’t
control the host loop or see what it’s doing.

Custom clocks can be used in guest mode, but they only affect Trio
timeouts, not host loop timeouts. And the autojump clock and related trio.testing.wait_all_tasks_blocked can
technically be used in guest mode, but they’ll only take Trio tasks
into account when decided whether to jump the clock or whether all
tasks are blocked.

Reference

	
trio.lowlevel.start_guest_run(async_fn: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[...], Awaitable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Awaitable][RetT [https://docs.python.org/3/library/typing.html#typing.TypeVar]]], *args: object [https://docs.python.org/3/library/functions.html#object], run_sync_soon_threadsafe: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[], object [https://docs.python.org/3/library/functions.html#object]]], object [https://docs.python.org/3/library/functions.html#object]], done_callback: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[Outcome [https://outcome.readthedocs.io/en/latest/api.html#outcome.Outcome][RetT [https://docs.python.org/3/library/typing.html#typing.TypeVar]]], object [https://docs.python.org/3/library/functions.html#object]], run_sync_soon_not_threadsafe: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[], object [https://docs.python.org/3/library/functions.html#object]]], object [https://docs.python.org/3/library/functions.html#object]] | None [https://docs.python.org/3/library/constants.html#None] = None, host_uses_signal_set_wakeup_fd: bool [https://docs.python.org/3/library/functions.html#bool] = False, clock: Clock | None [https://docs.python.org/3/library/constants.html#None] = None, instruments: Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][Instrument] = (), restrict_keyboard_interrupt_to_checkpoints: bool [https://docs.python.org/3/library/functions.html#bool] = False, strict_exception_groups: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Start a “guest” run of Trio on top of some other “host” event loop.

Each host loop can only have one guest run at a time.

You should always let the Trio run finish before stopping the host loop;
if not, it may leave Trio’s internal data structures in an inconsistent
state. You might be able to get away with it if you immediately exit the
program, but it’s safest not to go there in the first place.

Generally, the best way to do this is wrap this in a function that starts
the host loop and then immediately starts the guest run, and then shuts
down the host when the guest run completes.

Once start_guest_run() returns successfully, the guest run
has been set up enough that you can invoke sync-colored Trio
functions such as current_time(), spawn_system_task(),
and current_trio_token(). If a TrioInternalError occurs
during this early setup of the guest run, it will be raised out of
start_guest_run(). All other errors, including all errors
raised by the async_fn, will be delivered to your
done_callback at some point after start_guest_run() returns
successfully.

	Parameters:

	
	run_sync_soon_threadsafe – An arbitrary callable, which will be passed a
function as its sole argument:

def my_run_sync_soon_threadsafe(fn):
 ...

This callable should schedule fn() to be run by the host on its
next pass through its loop. Must support being called from
arbitrary threads.

	done_callback – An arbitrary callable:

def my_done_callback(run_outcome):
 ...

When the Trio run has finished, Trio will invoke this callback to let
you know. The argument is an outcome.Outcome [https://outcome.readthedocs.io/en/latest/api.html#outcome.Outcome], reporting what would
have been returned or raised by trio.run. This function can do
anything you want, but commonly you’ll want it to shut down the
host loop, unwrap the outcome, etc.

	run_sync_soon_not_threadsafe – Like run_sync_soon_threadsafe, but
will only be called from inside the host loop’s main thread.
Optional, but if your host loop allows you to implement this more
efficiently than run_sync_soon_threadsafe then passing it will
make things a bit faster.

	host_uses_signal_set_wakeup_fd (bool [https://docs.python.org/3/library/functions.html#bool]) – Pass True [https://docs.python.org/3/library/constants.html#True] if your host loop
uses signal.set_wakeup_fd [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd], and False [https://docs.python.org/3/library/constants.html#False] otherwise. For more details,
see Implementing guest mode for your favorite event loop.

For the meaning of other arguments, see trio.run.

Handing off live coroutine objects between coroutine runners

Internally, Python’s async/await syntax is built around the idea of
“coroutine objects” and “coroutine runners”. A coroutine object
represents the state of an async callstack. But by itself, this is
just a static object that sits there. If you want it to do anything,
you need a coroutine runner to push it forward. Every Trio task has an
associated coroutine object (see Task.coro), and the Trio
scheduler acts as their coroutine runner.

But of course, Trio isn’t the only coroutine runner in Python –
asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] has one, other event loops have them, you can even
define your own.

And in some very, very unusual circumstances, it even makes sense to
transfer a single coroutine object back and forth between different
coroutine runners. That’s what this section is about. This is an
extremely exotic use case, and assumes a lot of expertise in how
Python async/await works internally. For motivating examples, see
trio-asyncio issue #42 [https://github.com/python-trio/trio-asyncio/issues/42], and trio
issue #649 [https://github.com/python-trio/trio/issues/649]. For
more details on how coroutines work, we recommend André Caron’s A
tale of event loops [https://github.com/AndreLouisCaron/a-tale-of-event-loops], or
going straight to PEP 492 [https://www.python.org/dev/peps/pep-0492/] for the full details.

	
await trio.lowlevel.permanently_detach_coroutine_object(final_outcome: Outcome [https://outcome.readthedocs.io/en/latest/api.html#outcome.Outcome][Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Permanently detach the current task from the Trio scheduler.

Normally, a Trio task doesn’t exit until its coroutine object exits. When
you call this function, Trio acts like the coroutine object just exited
and the task terminates with the given outcome. This is useful if you want
to permanently switch the coroutine object over to a different coroutine
runner.

When the calling coroutine enters this function it’s running under Trio,
and when the function returns it’s running under the foreign coroutine
runner.

You should make sure that the coroutine object has released any
Trio-specific resources it has acquired (e.g. nurseries).

	Parameters:

	final_outcome (outcome.Outcome [https://outcome.readthedocs.io/en/latest/api.html#outcome.Outcome]) – Trio acts as if the current task exited
with the given return value or exception.

Returns or raises whatever value or exception the new coroutine runner
uses to resume the coroutine.

	
await trio.lowlevel.temporarily_detach_coroutine_object(abort_func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], NoReturn [https://docs.python.org/3/library/typing.html#typing.NoReturn]]], Abort]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Temporarily detach the current coroutine object from the Trio
scheduler.

When the calling coroutine enters this function it’s running under Trio,
and when the function returns it’s running under the foreign coroutine
runner.

The Trio Task will continue to exist, but will be suspended until
you use reattach_detached_coroutine_object() to resume it. In the
mean time, you can use another coroutine runner to schedule the coroutine
object. In fact, you have to – the function doesn’t return until the
coroutine is advanced from outside.

Note that you’ll need to save the current Task object to later
resume; you can retrieve it with current_task(). You can also use
this Task object to retrieve the coroutine object – see
Task.coro.

	Parameters:

	abort_func – Same as for wait_task_rescheduled(), except that it
must return Abort.FAILED. (If it returned
Abort.SUCCEEDED, then Trio would attempt to reschedule the
detached task directly without going through
reattach_detached_coroutine_object(), which would be bad.)
Your abort_func should still arrange for whatever the coroutine
object is doing to be cancelled, and then reattach to Trio and call
the raise_cancel callback, if possible.

Returns or raises whatever value or exception the new coroutine runner
uses to resume the coroutine.

	
await trio.lowlevel.reattach_detached_coroutine_object(task: Task, yield_value: object [https://docs.python.org/3/library/functions.html#object]) → None [https://docs.python.org/3/library/constants.html#None]

	Reattach a coroutine object that was detached using
temporarily_detach_coroutine_object().

When the calling coroutine enters this function it’s running under the
foreign coroutine runner, and when the function returns it’s running under
Trio.

This must be called from inside the coroutine being resumed, and yields
whatever value you pass in. (Presumably you’ll pass a value that will
cause the current coroutine runner to stop scheduling this task.) Then the
coroutine is resumed by the Trio scheduler at the next opportunity.

	Parameters:

	
	task (Task) – The Trio task object that the current coroutine was
detached from.

	yield_value (object [https://docs.python.org/3/library/functions.html#object]) – The object to yield to the current coroutine
runner.

Design and internals

Here we’ll discuss Trio’s overall design and architecture: how it fits
together and why we made the decisions we did. If all you want to do
is use Trio, then you don’t need to read this – though you might find
it interesting. The main target audience here is (a) folks who want to
read the code and potentially contribute, (b) anyone working on
similar libraries who want to understand what we’re up to, (c) anyone
interested in I/O library design generally.

There are many valid approaches to writing an async I/O library. This
is ours.

High-level design principles

Trio’s two overriding goals are usability and correctness: we
want to make it easy to get things right.

Of course there are lots of other things that matter too, like speed,
maintainability, etc. We want those too, as much as we can get. But
sometimes these things come in conflict, and when that happens, these
are our priorities.

In some sense the entire rest of this document is a description of how
these play out, but to give a simple example: Trio’s
KeyboardInterrupt handling machinery is a bit tricky and hard to
test, so it scores poorly on simplicity and maintainability. But we
think the usability+correctness gains outweigh this.

There are some subtleties here. Notice that it’s specifically “easy to
get things right”. There are situations (e.g. writing one-off scripts)
where the most “usable” tool is the one that will happily ignore
errors and keep going no matter what, or that doesn’t bother with
resource cleanup. (Cf. the success of PHP.) This is a totally valid
use case and valid definition of usability, but it’s not the one we
use: we think it’s easier to build reliable and correct systems if
exceptions propagate until handled and if the system catches you when
you make potentially dangerous resource handling errors [https://github.com/python-trio/trio/issues/265], so that’s what we
optimize for.

It’s also worth saying something about speed, since it often looms
large in comparisons between I/O libraries. This is a rather subtle
and complex topic.

In general, speed is certainly important – but the fact that people
sometimes use Python instead of C is a pretty good indicator that
usability often trumps speed in practice. We want to make Trio fast,
but it’s not an accident that it’s left off our list of overriding
goals at the top: if necessary we are willing to accept some slowdowns
in the service of usability and reliability.

To break things down in more detail:

First of all, there are the cases where speed directly impacts
correctness, like when you hit an accidental O(N**2) algorithm and
your program effectively locks up. Trio is very careful to use
algorithms and data structures that have good worst-case behavior
(even if this might mean sacrificing a few percentage points of speed
in the average case).

Similarly, when there’s a conflict, we care more about 99th percentile
latencies than we do about raw throughput, because insufficient
throughput – if it’s consistent! – can often be budgeted for and
handled with horizontal scaling, but once you lose latency it’s gone
forever, and latency spikes can easily cross over to become a
correctness issue (e.g., an RPC server that responds slowly enough to
trigger timeouts is effectively non-functional). Again, of course,
this doesn’t mean we don’t care about throughput – but sometimes
engineering requires making trade-offs, especially for early-stage
projects that haven’t had time to optimize for all use cases yet.

And finally: we care about speed on real-world applications quite a
bit, but speed on microbenchmarks is just about our lowest
priority. We aren’t interested in competing to build “the fastest echo
server in the West”. I mean, it’s nice if it happens or whatever, and
microbenchmarks are an invaluable tool for understanding a system’s
behavior. But if you play that game to win then it’s very easy to get
yourself into a situation with seriously misaligned incentives, where
you have to start compromising on features and correctness in order to
get a speedup that’s totally irrelevant to real-world applications. In
most cases (we suspect) it’s the application code that’s the
bottleneck, and you’ll get more of a win out of running the whole app
under PyPy than out of any heroic optimizations to the I/O
layer. (And this is why Trio does place a priority on PyPy
compatibility.)

As a matter of tactics, we also note that at this stage in Trio’s
lifecycle, it’d probably be a mistake to worry about speed too
much. It doesn’t make sense to spend lots of effort optimizing an API
whose semantics are still in flux.

User-level API principles

Basic principles

Trio is very much a continuation of the ideas explored in this blog
post [https://vorpus.org/blog/some-thoughts-on-asynchronous-api-design-in-a-post-asyncawait-world/],
and in particular the principles identified there [https://vorpus.org/blog/some-thoughts-on-asynchronous-api-design-in-a-post-asyncawait-world/#review-and-summing-up-what-is-async-await-native-anyway]
that make curio easier to use correctly than asyncio. So Trio also
adopts these rules, in particular:

	The only form of concurrency is the task.

	Tasks are guaranteed to run to completion.

	Task spawning is always explicit. No callbacks, no implicit
concurrency, no futures/deferreds/promises/other APIs that involve
callbacks. All APIs are “causal” [https://vorpus.org/blog/some-thoughts-on-asynchronous-api-design-in-a-post-asyncawait-world/#review-and-summing-up-what-is-async-await-native-anyway]
except for those that are explicitly used for task spawning.

	Exceptions are used for error handling; try/finally
and with blocks for handling cleanup.

Cancel points and schedule points

The first major place that Trio departs from curio is in its decision
to make a much larger fraction of the API use sync functions rather
than async functions, and to provide strong conventions about cancel
points and schedule points. (At this point, there are a lot of ways
that Trio and curio have diverged. But this was really the origin –
the tipping point where I realized that exploring these ideas would
require a new library, and couldn’t be done inside curio.) The full
reasoning here takes some unpacking.

First, some definitions: a cancel point is a point where your code
checks if it has been cancelled – e.g., due to a timeout having
expired – and potentially raises a Cancelled error. A schedule
point is a point where the current task can potentially be suspended,
and another task allowed to run.

In curio, the convention is that all operations that interact with the
run loop in any way are syntactically async, and it’s undefined which
of these operations are cancel/schedule points; users are instructed
to assume that any of them might be cancel/schedule points, but with
a few exceptions there’s no guarantee that any of them are unless they
actually block. (I.e., whether a given call acts as a cancel/schedule
point is allowed to vary across curio versions and also depending on
runtime factors like network load.)

But when using an async library, there are good reasons why you need
to be aware of cancel and schedule points. They introduce a set of
complex and partially conflicting constraints on your code:

You need to make sure that every task passes through a cancel
point regularly, because otherwise timeouts become ineffective
and your code becomes subject to DoS attacks and other
problems. So for correctness, it’s important to make sure you
have enough cancel points.

But… every cancel point also increases the chance of subtle
bugs in your program, because it’s a place where you have to be
prepared to handle a Cancelled exception and clean up
properly. And while we try to make this as easy as possible,
these kinds of clean-up paths are notorious for getting missed
in testing and harboring subtle bugs. So the more cancel points
you have, the harder it is to make sure your code is correct.

Similarly, you need to make sure that every task passes through
a schedule point regularly, because otherwise this task could
end up hogging the event loop and preventing other code from
running, causing a latency spike. So for correctness, it’s
important to make sure you have enough schedule points.

But… you have to be careful here too, because every schedule
point is a point where arbitrary other code could run, and
alter your program’s state out from under you, introducing
classic concurrency bugs. So as you add more schedule points,
it becomes exponentially harder to reason about how your code
is interleaved and be sure that it’s correct [https://glyph.twistedmatrix.com/2014/02/unyielding.html].

So an important question for an async I/O library is: how do we help
the user manage these trade-offs?

Trio’s answer is informed by two further observations:

First, any time a task blocks (e.g., because it does an await
sock.recv() but there’s no data available to receive), that
has to be a cancel point (because if the I/O never arrives, we
need to be able to time out), and it has to be a schedule point
(because the whole idea of asynchronous programming is that
when one task is waiting we can switch to another task to get
something useful done).

And second, a function which sometimes counts as a cancel/schedule
point, and sometimes doesn’t, is the worst of both worlds: you have
put in the effort to make sure your code handles cancellation or
interleaving correctly, but you can’t count on it to help meet latency
requirements.

With all that in mind, Trio takes the following approach:

Rule 1: to reduce the number of concepts to keep track of, we collapse
cancel points and schedule points together. Every point that is a
cancel point is also a schedule point and vice versa. These are
distinct concepts both theoretically and in the actual implementation,
but we hide that distinction from the user so that there’s only one
concept they need to keep track of.

Rule 2: Cancel+schedule points are determined statically. A Trio
primitive is either always a cancel+schedule point, or never a
cancel+schedule point, regardless of runtime conditions. This is
because we want it to be possible to determine whether some code has
“enough” cancel/schedule points by reading the source code.

In fact, to make this even simpler, we make it so you don’t even have
to look at the function arguments: each function is either a
cancel+schedule point on every call or on no calls.

(Pragmatic exception: a Trio primitive is not required to act as a
cancel+schedule point when it raises an exception, even if it would
act as one in the case of a successful return. See issue 474 [https://github.com/python-trio/trio/issues/474] for more details;
basically, requiring checkpoints on all exception paths added a lot of
implementation complexity with negligible user-facing benefit.)

Observation: since blocking is always a cancel+schedule point, rule 2
implies that any function that sometimes blocks is always a
cancel+schedule point.

So that gives us a number of cancel+schedule points: all the functions
that can block. Are there any others? Trio’s answer is: no. It’s easy
to add new points explicitly (throw in a sleep(0) or whatever) but
hard to get rid of them when you don’t want them. (And this is a real
issue – “too many potential cancel points” is definitely a tension
I’ve felt [https://github.com/dabeaz/curio/issues/149#issuecomment-269745283]
while trying to build things like task supervisors in curio.) And we
expect that most Trio programs will execute potentially-blocking
operations “often enough” to produce reasonable behavior. So, rule 3:
the only cancel+schedule points are the potentially-blocking
operations.

And now that we know where our cancel+schedule points are, there’s the
question of how to effectively communicate this information to the
user. We want some way to mark out a category of functions that might
block or trigger a task switch, so that they’re clearly distinguished
from functions that don’t do this. Wouldn’t it be nice if there were
some Python feature, that naturally divided functions into two
categories, and maybe put some sort of special syntactic marking on
with the functions that can do weird things like block and task
switch…? What a coincidence, that’s exactly how async functions
work! Rule 4: in Trio, only the potentially blocking functions are
async. So e.g. Event.wait() is async, but Event.set() is
sync.

Summing up: out of what’s actually a pretty vast space of design
possibilities, we declare by fiat that when it comes to Trio
primitives, all of these categories are identical:

	async functions

	functions that can, under at least some circumstances, block

	functions where the caller needs to be prepared to handle
potential Cancelled exceptions

	functions that are guaranteed to notice any pending cancellation

	functions where you need to be prepared for a potential task switch

	functions that are guaranteed to take care of switching tasks if
appropriate

This requires some non-trivial work internally – it actually takes a
fair amount of care to make those 4 cancel/schedule categories line
up, and there are some shenanigans required to let sync and async APIs
both interact with the run loop on an equal footing. But this is all
invisible to the user, we feel that it pays off in terms of usability
and correctness.

There is one exception to these rules, for async context
managers. Context managers are composed of two operations – enter and
exit – and sometimes only one of these is potentially
blocking. (Examples: async with lock: can block when entering but
never when exiting; async with open_nursery() as ...: can block
when exiting but never when entering.) But, Python doesn’t have
“half-asynchronous” context managers: either both operations are
async-flavored, or neither is. In Trio we take a pragmatic approach:
for this kind of async context manager, we enforce the above rules
only on the potentially blocking operation, and the other operation is
allowed to be syntactically async but semantically
synchronous. And async context managers should always document which
of their operations are schedule+cancel points.

Exceptions always propagate

Another rule that Trio follows is that exceptions must always
propagate. This is like the zen [https://www.python.org/dev/peps/pep-0020/] line about “Errors
should never pass silently”, except that in every other concurrency
library for Python (threads, asyncio, curio, …), it’s fairly common
to end up with an undeliverable exception, which just gets printed to
stderr and then discarded. While we understand the pragmatic
constraints that motivated these libraries to adopt this approach, we
feel that there are far too many situations where no human will ever
look at stderr and notice the problem, and insist that Trio APIs find
a way to propagate exceptions “up the stack” – whatever that might
mean.

This is often a challenging rule to follow – for example, the call
soon code has to jump through some hoops to make it happen – but its
most dramatic influence can seen in Trio’s task-spawning interface,
where it motivates the use of “nurseries”:

async def parent():
 async with trio.open_nursery() as nursery:
 nursery.start_soon(child)

(See Tasks let you do multiple things at once for full details.)

If you squint you can see the conceptual influence of Erlang’s “task
linking” and “task tree” ideas here, though the details are different.

This design also turns out to enforce a remarkable, unexpected
invariant.

In the blog post [https://vorpus.org/blog/some-thoughts-on-asynchronous-api-design-in-a-post-asyncawait-world/#c-c-c-c-causality-breaker]
I called out a nice feature of curio’s spawning API, which is that
since spawning is the only way to break causality, and in curio
spawn is async, which means that in curio sync functions are
guaranteed to be causal. One limitation though is that this invariant
is actually not very predictive: in curio there are lots of async
functions that could spawn off children and violate causality, but
most of them don’t, but there’s no clear marker for the ones that do.

Our API doesn’t quite give that guarantee, but actually a better
one. In Trio:

	Sync functions can’t create nurseries, because nurseries require an
async with

	Any async function can create a nursery and start new tasks… but
creating a nursery allows task starting but does not permit
causality breaking, because the children have to exit before the
function is allowed to return. So we can preserve causality without
having to give up concurrency!

	The only way to violate causality (which is an important feature,
just one that needs to be handled carefully) is to explicitly create
a nursery object in one task and then pass it into another task. And
this provides a very clear and precise signal about where the funny
stuff is happening – just watch for the nursery object getting
passed around.

Introspection, debugging, testing

Tools for introspection and debugging are critical to achieving
usability and correctness in practice, so they should be first-class
considerations in Trio.

Similarly, the availability of powerful testing tools has a huge
impact on usability and correctness; we consider testing helpers to be
very much in scope for the Trio project.

Specific style guidelines

	As noted above, functions that don’t block should be sync-colored,
and functions that might block should be async-colored and
unconditionally act as cancel+schedule points.

	Any function that takes a callable to run should have a signature
like:

def call_the_thing(fn, *args, kwonly1, kwonly2, ...)::
 ...

where fn(*args) is the thing to be called, and kwonly1,
kwonly2, … are keyword-only arguments that belong to
call_the_thing. This applies even if call_the_thing doesn’t
take any arguments of its own, i.e. in this case its signature looks
like:

def call_the_thing(fn, *args)::
 ...

This allows users to skip faffing about with
functools.partial() [https://docs.python.org/3/library/functools.html#functools.partial] in most cases, while still providing an
unambiguous and extensible way to pass arguments to the caller.
(Hat-tip to asyncio, who we stole this convention from.)

	Whenever it makes sense, Trio classes should have a method called
statistics() which returns an immutable object with named fields
containing internal statistics about the object that are useful for
debugging or introspection (examples).

	Functions or methods whose purpose is to wait for a condition to
become true should be called wait_<condition>. This avoids
ambiguities like “does await readable() check readability
(returning a bool) or wait for readability?”.

Sometimes this leads to the slightly funny looking await
wait_.... Sorry. As far as I can tell all the alternatives are
worse, and you get used to the convention pretty quick.

	If it’s desirable to have both blocking and non-blocking versions of
a function, then they look like:

async def OPERATION(...):
 ...

def OPERATION_nowait(...):
 ...

and the nowait version raises trio.WouldBlock if it would block.

	…we should, but currently don’t, have a solid convention to
distinguish between functions that take an async callable and those
that take a sync callable. See issue #68 [https://github.com/python-trio/trio/issues/68].

A brief tour of Trio’s internals

If you want to understand how Trio is put together internally, then
the first thing to know is that there’s a very strict internal
layering: the trio._core package is a fully self-contained
implementation of the core scheduling/cancellation/IO handling logic,
and then the other trio.* modules are implemented in terms of the
API it exposes. (If you want to see what this API looks like, then
import trio; print(trio._core.__all__)). Everything exported from
trio._core is also exported as part of the trio,
trio.lowlevel, or trio.testing namespaces. (See their
respective __init__.py files for details; there’s a test to
enforce this.)

Rationale: currently, Trio is a new project in a novel part of the
design space, so we don’t make any stability guarantees. But the goal
is to reach the point where we can declare the API stable. It’s
unlikely that we’ll be able to quickly explore all possible corners of
the design space and cover all possible types of I/O. So instead, our
strategy is to make sure that it’s possible for independent packages
to add new features on top of Trio. Enforcing the trio vs
trio._core split is a way of eating our own dogfood [https://en.wikipedia.org/wiki/Eating_your_own_dog_food]: basic
functionality like trio.Lock and trio.socket is
actually implemented solely in terms of public APIs. And the hope is
that by doing this, we increase the chances that someone who comes up
with a better kind of queue or wants to add some new functionality
like, say, file system change watching, will be able to do that on top
of our public APIs without having to modify Trio internals.

Inside trio._core

The _ki.py module implements the core infrastructure for safe handling
of KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt]. It’s largely independent of the rest of Trio,
and could (possibly should?) be extracted into its own independent package.

The most important submodule, where everything is integrated, is
_run.py. (This is also by far the largest submodule; it’d be nice
to factor bits of it out where possible, but it’s tricky because the
core functionality genuinely is pretty intertwined.) Notably, this is
where cancel scopes, nurseries, and Task are
defined; it’s also where the scheduler state and trio.run()
live.

The one thing that isn’t in _run.py is I/O handling. This is
delegated to an IOManager class, of which there are currently
three implementations:

	EpollIOManager in _io_epoll.py (used on Linux, illumos)

	KqueueIOManager in _io_kqueue.py (used on macOS, *BSD)

	WindowsIOManager in _io_windows.py (used on Windows)

The epoll and kqueue backends take advantage of the epoll and kqueue
wrappers in the stdlib select [https://docs.python.org/3/library/select.html#module-select] module. The windows backend uses
CFFI to access to the Win32 API directly (see
trio/_core/_windows_cffi.py). In general, we prefer to go directly
to the raw OS functionality rather than use selectors [https://docs.python.org/3/library/selectors.html#module-selectors], for
several reasons:

	Controlling our own fate: I/O handling is pretty core to what Trio
is about, and selectors [https://docs.python.org/3/library/selectors.html#module-selectors] is (as of 2017-03-01) somewhat buggy
(e.g. issue 29256 [https://bugs.python.org/issue29256], issue
29255 [https://bugs.python.org/issue29255]). Which isn’t a big
deal on its own, but since selectors [https://docs.python.org/3/library/selectors.html#module-selectors] is part of the standard
library we can’t fix it and ship an updated version; we’re stuck
with whatever we get. We want more control over our users’
experience than that.

	Impedance mismatch: the selectors [https://docs.python.org/3/library/selectors.html#module-selectors] API isn’t particularly
well-fitted to how we want to use it. For example, kqueue natively
treats an interest in readability of some fd as a separate thing
from an interest in that same fd’s writability, which neatly matches
Trio’s model. selectors.KqueueSelector [https://docs.python.org/3/library/selectors.html#selectors.KqueueSelector] goes to some effort
internally to lump together all interests in a single fd, and to use
it we’d then we’d have to jump through more hoops to reverse
this. Of course, the native epoll API is fd-centric in the same way
as the selectors [https://docs.python.org/3/library/selectors.html#module-selectors] API so we do still have to write code to
jump through these hoops, but the point is that the selectors [https://docs.python.org/3/library/selectors.html#module-selectors]
abstractions aren’t providing a lot of extra value.

	(Most important) Access to raw platform capabilities:
selectors [https://docs.python.org/3/library/selectors.html#module-selectors] is highly inadequate on Windows, and even on
Unix-like systems it hides a lot of power (e.g. kqueue can do a lot
more than just check fd readability/writability!).

The IOManager layer provides a fairly raw exposure of the capabilities
of each system, with public API functions that vary between different
backends. (This is somewhat inspired by how os [https://docs.python.org/3/library/os.html#module-os] works.) These
public APIs are then exported as part of trio.lowlevel, and
higher-level APIs like trio.socket abstract over these
system-specific APIs to provide a uniform experience.

Currently the choice of backend is made statically at import time, and
there is no provision for “pluggable” backends. The intuition here is
that we’d rather focus our energy on making one set of solid, official
backends that provide a high-quality experience out-of-the-box on all
supported systems.

Release history

Trio 0.23.0 (2023-11-03)

Headline features

	Add type hints. (#543 [https://github.com/python-trio/trio/issues/543])

Features

	When exiting a nursery block, the parent task always waits for child
tasks to exit. This wait cannot be cancelled. However, previously, if
you tried to cancel it, it would inject a Cancelled exception,
even though it wasn’t cancelled. Most users probably never noticed
either way, but injecting a Cancelled here is not really useful, and
in some rare cases caused confusion or problems, so Trio no longer
does that. (#1457 [https://github.com/python-trio/trio/issues/1457])

	If called from a thread spawned by trio.to_thread.run_sync, trio.from_thread.run and
trio.from_thread.run_sync now reuse the task and cancellation status of the host task;
this means that context variables and cancel scopes naturally propagate ‘through’
threads spawned by Trio. You can also use trio.from_thread.check_cancelled
to efficiently check for cancellation without reentering the Trio thread. (#2392 [https://github.com/python-trio/trio/issues/2392])

	trio.lowlevel.start_guest_run() now does a bit more setup of the guest run
before it returns to its caller, so that the caller can immediately make calls to
trio.current_time(), trio.lowlevel.spawn_system_task(),
trio.lowlevel.current_trio_token(), etc. (#2696 [https://github.com/python-trio/trio/issues/2696])

Bugfixes

	When a starting function raises before calling trio.TaskStatus.started(),
trio.Nursery.start() will no longer wrap the exception in an undocumented
ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup]. Previously, trio.Nursery.start() would incorrectly
raise an ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup] containing it when using trio.run(...,
strict_exception_groups=True). (#2611 [https://github.com/python-trio/trio/issues/2611])

Deprecations and removals

	To better reflect the underlying thread handling semantics,
the keyword argument for trio.to_thread.run_sync that was
previously called cancellable is now named abandon_on_cancel.
It still does the same thing – allow the thread to be abandoned
if the call to trio.to_thread.run_sync is cancelled – but since we now
have other ways to propagate a cancellation without abandoning
the thread, “cancellable” has become somewhat of a misnomer.
The old cancellable name is now deprecated. (#2841 [https://github.com/python-trio/trio/issues/2841])

	Deprecated support for math.inf for the backlog argument in open_tcp_listeners, making its docstring correct in the fact that only TypeError is raised if invalid arguments are passed. (#2842 [https://github.com/python-trio/trio/issues/2842])

Removals without deprecations

	Drop support for Python3.7 and PyPy3.7/3.8. (#2668 [https://github.com/python-trio/trio/issues/2668])

	Removed special MultiError traceback handling for IPython. As of version 8.15 [https://ipython.readthedocs.io/en/stable/whatsnew/version8.html#ipython-8-15] ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup] is handled natively. (#2702 [https://github.com/python-trio/trio/issues/2702])

Miscellaneous internal changes

	Trio now indicates its presence to sniffio [https://sniffio.readthedocs.io/en/latest/index.html#module-sniffio] using the sniffio.thread_local
interface that is preferred since sniffio v1.3.0. This should be less likely
than the previous approach to cause sniffio.current_async_library() [https://sniffio.readthedocs.io/en/latest/index.html#sniffio.current_async_library] to
return incorrect results due to unintended inheritance of contextvars. (#2700 [https://github.com/python-trio/trio/issues/2700])

	On windows, if SIO_BASE_HANDLE failed and SIO_BSP_HANDLE_POLL didn’t return a different socket, runtime error will now raise from the OSError that indicated the issue so that in the event it does happen it might help with debugging. (#2807 [https://github.com/python-trio/trio/issues/2807])

Trio 0.22.2 (2023-07-13)

Bugfixes

	Fix PermissionError when importing trio due to trying to access pthread. (#2688 [https://github.com/python-trio/trio/issues/2688])

Trio 0.22.1 (2023-07-02)

Breaking changes

	Timeout functions now raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if passed math.nan [https://docs.python.org/3/library/math.html#math.nan]. This includes trio.sleep, trio.sleep_until, trio.move_on_at, trio.move_on_after, trio.fail_at and trio.fail_after. (#2493 [https://github.com/python-trio/trio/issues/2493])

Features

	Added support for naming threads created with trio.to_thread.run_sync, requires pthreads so is only available on POSIX platforms with glibc installed. (#1148 [https://github.com/python-trio/trio/issues/1148])

	trio.socket.socket now prints the address it tried to connect to upon failure. (#1810 [https://github.com/python-trio/trio/issues/1810])

Bugfixes

	Fixed a crash that can occur when running Trio within an embedded Python interpreter, by handling the TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] that is raised when trying to (re-)install a C signal handler. (#2333 [https://github.com/python-trio/trio/issues/2333])

	Fix sniffio.current_async_library() [https://sniffio.readthedocs.io/en/latest/index.html#sniffio.current_async_library] when Trio tasks are spawned from a non-Trio context (such as when using trio-asyncio). Previously, a regular Trio task would inherit the non-Trio library name, and spawning a system task would cause the non-Trio caller to start thinking it was Trio. (#2462 [https://github.com/python-trio/trio/issues/2462])

	Issued a new release as in the git tag for 0.22.0, trio.__version__ is incorrectly set to 0.21.0+dev. (#2485 [https://github.com/python-trio/trio/issues/2485])

Improved documentation

	Documented that Nursery.start_soon does not guarantee task ordering. (#970 [https://github.com/python-trio/trio/issues/970])

Trio 0.22.0 (2022-09-28)

Headline features

	MultiError has been deprecated in favor of the standard BaseExceptionGroup [https://docs.python.org/3/library/exceptions.html#BaseExceptionGroup]
(introduced in PEP 654 [https://peps.python.org/pep-0654/]). On Python versions below 3.11, this exception and its
derivative ExceptionGroup [https://docs.python.org/3/library/exceptions.html#ExceptionGroup] are provided by the backport [https://pypi.org/project/exceptiongroup/]. Trio still raises
MultiError, but it has been refactored into a subclass of BaseExceptionGroup [https://docs.python.org/3/library/exceptions.html#BaseExceptionGroup]
which users should catch instead of MultiError. Uses of the MultiError.filter()
class method should be replaced with BaseExceptionGroup.split() [https://docs.python.org/3/library/exceptions.html#BaseExceptionGroup.split]. Uses of the
MultiError.catch() class method should be replaced with either except* clauses
(on Python 3.11+) or the exceptiongroup.catch() context manager provided by the
backport [https://pypi.org/project/exceptiongroup/].

See the updated documentation for details.
(#2211 [https://github.com/python-trio/trio/issues/2211])

Features

	Added support for Datagram TLS [https://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security],
for secure communication over UDP. Currently requires PyOpenSSL [https://pypi.org/p/pyopenssl]. (#2010 [https://github.com/python-trio/trio/issues/2010])

Trio 0.21.0 (2022-06-07)

Features

	Trio now supports Python 3.11. (#2270 [https://github.com/python-trio/trio/issues/2270], #2318 [https://github.com/python-trio/trio/issues/2318], #2319 [https://github.com/python-trio/trio/issues/2319])

Deprecations and Removals

	Remove support for Python 3.6. (#2210 [https://github.com/python-trio/trio/issues/2210])

Trio 0.20.0 (2022-02-21)

Features

	You can now conveniently spawn a child process in a background task
and interact it with on the fly using process = await
nursery.start(run_process, ...). See run_process for more details.
We recommend most users switch to this new API. Also note that:

	trio.open_process has been deprecated in favor of
trio.lowlevel.open_process,

	The aclose method on Process has been deprecated along with
async with process_obj. (#1104 [https://github.com/python-trio/trio/issues/1104])

	Now context variables set with contextvars [https://docs.python.org/3/library/contextvars.html#module-contextvars] are preserved when running functions
in a worker thread with trio.to_thread.run_sync, or when running
functions from the worker thread in the parent Trio thread with
trio.from_thread.run, and trio.from_thread.run_sync.
This is done by automatically copying the contextvars [https://docs.python.org/3/library/contextvars.html#module-contextvars] context.
trio.lowlevel.spawn_system_task now also receives an optional context argument. (#2160 [https://github.com/python-trio/trio/issues/2160])

Bugfixes

	Trio now avoids creating cyclic garbage when a MultiError is generated and
filtered, including invisibly within the cancellation system. This means errors raised
through nurseries and cancel scopes should result in less GC latency. (#2063 [https://github.com/python-trio/trio/issues/2063])

	Trio now deterministically cleans up file descriptors that were opened before
subprocess creation fails. Previously, they would remain open until the next run of
the garbage collector. (#2193 [https://github.com/python-trio/trio/issues/2193])

	Add compatibility with OpenSSL 3.0 on newer Python and PyPy versions by working
around SSLEOFError not being raised properly. (#2203 [https://github.com/python-trio/trio/issues/2203])

	Fix a bug that could cause Process.wait to hang on Linux systems using pidfds, if
another task were to access Process.returncode after the process exited but before
wait woke up (#2209 [https://github.com/python-trio/trio/issues/2209])

Trio 0.19.0 (2021-06-15)

Features

	Trio now supports Python 3.10. (#1921 [https://github.com/python-trio/trio/issues/1921])

	Use slots for Task which should make them slightly smaller and faster. (#1927 [https://github.com/python-trio/trio/issues/1927])

	Make Event more lightweight by using less objects (about 2 rather
than 5, including a nested ParkingLot and attribute dicts) and simpler
structures (set rather than OrderedDict). This may benefit applications that
create a large number of event instances, such as with the “replace event
object on every set()” idiom. (#1948 [https://github.com/python-trio/trio/issues/1948])

Bugfixes

	The event loop now holds on to references of coroutine frames for only
the minimum necessary period of time. (#1864 [https://github.com/python-trio/trio/issues/1864])

	The TrioToken class can now be used as a target of a weak reference. (#1924 [https://github.com/python-trio/trio/issues/1924])

Trio 0.18.0 (2021-01-11)

Features

	Add synchronous .close() methods and context manager (with x) support
for MemorySendChannel and MemoryReceiveChannel. (#1797 [https://github.com/python-trio/trio/issues/1797])

Bugfixes

	Previously, on Windows, Trio programs using thousands of sockets at the same time could trigger extreme slowdowns in the Windows kernel. Now, Trio works around this issue, so you should be able to use as many sockets as you want. (#1280 [https://github.com/python-trio/trio/issues/1280])

	trio.from_thread.run() no longer crashes the Trio run if it is
executed after the system nursery has been closed but before the run
has finished. Calls made at this time will now raise
trio.RunFinishedError. This fixes a regression introduced in
Trio 0.17.0. The window in question is only one scheduler tick long in
most cases, but may be longer if async generators need to be cleaned up. (#1738 [https://github.com/python-trio/trio/issues/1738])

	Fix a crash in pypy-3.7 (#1765 [https://github.com/python-trio/trio/issues/1765])

	Trio now avoids creating cyclic garbage as often. This should have a
minimal impact on most programs, but can slightly reduce how often the
cycle collector GC runs on CPython, which can reduce latency spikes. (#1770 [https://github.com/python-trio/trio/issues/1770])

Deprecations and removals

	Remove deprecated max_refill_bytes from SSLStream. (#959 [https://github.com/python-trio/trio/issues/959])

	Remove the deprecated tiebreaker argument to trio.testing.wait_all_tasks_blocked. (#1558 [https://github.com/python-trio/trio/issues/1558])

	Remove the deprecated trio.hazmat module. (#1722 [https://github.com/python-trio/trio/issues/1722])

	Stop allowing subclassing public classes. This behavior was deprecated in 0.15.0. (#1726 [https://github.com/python-trio/trio/issues/1726])

Trio 0.17.0 (2020-09-15)

Headline features

	Trio now supports automatic async generator finalization, so more async generators will work even if you
don’t wrap them in async with async_generator.aclosing():
blocks. Please see the documentation for important caveats; in
particular, yielding within a nursery or cancel scope remains
unsupported. (#265 [https://github.com/python-trio/trio/issues/265])

Features

	trio.open_tcp_stream has a new local_address= keyword argument
that can be used on machines with multiple IP addresses to control
which IP is used for the outgoing connection. (#275 [https://github.com/python-trio/trio/issues/275])

	If you pass a raw IP address into sendto, it no longer spends any
time trying to resolve the hostname. If you’re using UDP, this should
substantially reduce your per-packet overhead. (#1595 [https://github.com/python-trio/trio/issues/1595])

	trio.lowlevel.checkpoint is now much faster. (#1613 [https://github.com/python-trio/trio/issues/1613])

	We switched to a new, lower-overhead data structure to track upcoming
timeouts, which should make your programs faster. (#1629 [https://github.com/python-trio/trio/issues/1629])

Bugfixes

	On macOS and BSDs, explicitly close our wakeup socketpair when we’re
done with it. (#1621 [https://github.com/python-trio/trio/issues/1621])

	Trio can now be imported when sys.excepthook [https://docs.python.org/3/library/sys.html#sys.excepthook] is a functools.partial [https://docs.python.org/3/library/functools.html#functools.partial] instance, which might occur in a
pytest-qt test function. (#1630 [https://github.com/python-trio/trio/issues/1630])

	The thread cache didn’t release its reference to the previous job. (#1638 [https://github.com/python-trio/trio/issues/1638])

	On Windows, Trio now works around the buggy behavior of certain
Layered Service Providers (system components that can intercept
network activity) that are built on top of a commercially available
library called Komodia Redirector. This benefits users of products
such as Astrill VPN and Qustodio parental controls. Previously, Trio
would crash on startup when run on a system where such a product was
installed. (#1659 [https://github.com/python-trio/trio/issues/1659])

Deprecations and removals

	Remove wait_socket_*, notify_socket_closing, notify_fd_closing, run_sync_in_worker_thread and current_default_worker_thread_limiter. They were deprecated in 0.12.0. (#1596 [https://github.com/python-trio/trio/issues/1596])

Miscellaneous internal changes

	When using instruments, you now only “pay for what you use”:
if there are no instruments installed that override a particular hook such as
before_task_step(), then Trio doesn’t waste any effort
on checking its instruments when the event corresponding to that hook occurs.
Previously, installing any instrument would incur all the instrumentation overhead,
even for hooks no one was interested in. (#1340 [https://github.com/python-trio/trio/issues/1340])

Trio 0.16.0 (2020-06-10)

Headline features

	If you want to use Trio, but are stuck with some other event loop like
Qt or PyGame, then good news: now you can have both. For details, see:
Using “guest mode” to run Trio on top of other event loops. (#399 [https://github.com/python-trio/trio/issues/399])

Features

	To speed up trio.to_thread.run_sync, Trio now caches and reuses
worker threads.

And in case you have some exotic use case where you need to spawn
threads manually, but want to take advantage of Trio’s cache, you can
do that using the new trio.lowlevel.start_thread_soon. (#6 [https://github.com/python-trio/trio/issues/6])

	Tasks spawned with nursery.start() aren’t treated as
direct children of their nursery until they call task_status.started().
This is visible through the task tree introspection attributes such as
Task.parent_nursery. Sometimes, though,
you want to know where the task is going to wind up, even if it hasn’t finished
initializing yet. To support this, we added a new attribute
Task.eventual_parent_nursery.
For a task spawned with start() that hasn’t yet called
started(), this is the nursery that the task was nominally started in,
where it will be running once it finishes starting up. In all other cases,
it is None. (#1558 [https://github.com/python-trio/trio/issues/1558])

Bugfixes

	Added a helpful error message if an async function is passed to trio.to_thread.run_sync. (#1573 [https://github.com/python-trio/trio/issues/1573])

Deprecations and removals

	Remove BlockingTrioPortal: it was deprecated in 0.12.0. (#1574 [https://github.com/python-trio/trio/issues/1574])

	The tiebreaker argument to trio.testing.wait_all_tasks_blocked
has been deprecated. This is a highly obscure feature that was
probably never used by anyone except trio.testing.MockClock, and
MockClock doesn’t need it anymore. (#1587 [https://github.com/python-trio/trio/issues/1587])

	Remove the deprecated trio.ssl and trio.subprocess modules. (#1594 [https://github.com/python-trio/trio/issues/1594])

Miscellaneous internal changes

	We refactored trio.testing.MockClock so that it no longer needs to
run an internal task to manage autojumping. This should be mostly
invisible to users, but there is one semantic change: the interaction
between trio.testing.wait_all_tasks_blocked and the autojump clock
was fixed. Now, the autojump will always wait until after all
wait_all_tasks_blocked calls have finished before
firing, instead of it depending on which threshold values you passed. (#1587 [https://github.com/python-trio/trio/issues/1587])

Trio 0.15.1 (2020-05-22)

Bugfixes

	Fix documentation build. (This must be a new release tag to get readthedocs
“stable” to include the changes from 0.15.0.)

	Added a helpful error message if an async function is passed to trio.from_thread.run_sync or a sync function to trio.from_thread.run. (#1244 [https://github.com/python-trio/trio/issues/1244])

Trio 0.15.0 (2020-05-19)

Features

	Previously, when trio.run_process was cancelled, it always killed
the subprocess immediately. Now, on Unix, it first gives the process a
chance to clean up by sending SIGTERM, and only escalates to
SIGKILL if the process is still running after 5 seconds. But if
you prefer the old behavior, or want to adjust the timeout, then don’t
worry: you can now pass a custom deliver_cancel= argument to
define your own process killing policy. (#1104 [https://github.com/python-trio/trio/issues/1104])

	It turns out that creating a subprocess can block the parent process
for a surprisingly long time. So trio.open_process now uses a worker
thread to avoid blocking the event loop. (#1109 [https://github.com/python-trio/trio/issues/1109])

	We’ve added FreeBSD to the list of platforms we support and test on. (#1118 [https://github.com/python-trio/trio/issues/1118])

	On Linux kernels v5.3 or newer, trio.Process.wait now uses the
pidfd API [https://lwn.net/Articles/794707/] to track child
processes. This shouldn’t have any user-visible change, but it makes
working with subprocesses faster and use less memory. (#1241 [https://github.com/python-trio/trio/issues/1241])

	The trio.Process.returncode attribute is now automatically updated
as needed, instead of only when you call poll or
wait. Also, repr(process_object) now always
contains up-to-date information about the process status. (#1315 [https://github.com/python-trio/trio/issues/1315])

Bugfixes

	On Ubuntu systems, the system Python includes a custom
unhandled-exception hook to perform crash reporting [https://wiki.ubuntu.com/Apport]. Unfortunately, Trio wants to use
the same hook to print nice MultiError tracebacks, causing a
conflict. Previously, Trio would detect the conflict, print a warning,
and you just wouldn’t get nice MultiError tracebacks. Now, Trio has
gotten clever enough to integrate its hook with Ubuntu’s, so the two
systems should Just Work together. (#1065 [https://github.com/python-trio/trio/issues/1065])

	Fixed an over-strict test that caused failures on Alpine Linux.
Started testing against Alpine in CI. (#1499 [https://github.com/python-trio/trio/issues/1499])

	Calling open_signal_receiver with no arguments used to succeed without listening for any signals. This was confusing, so now it raises TypeError instead. (#1526 [https://github.com/python-trio/trio/issues/1526])

Deprecations and Removals

	Remove support for Python 3.5. (#75 [https://github.com/python-trio/trio/issues/75])

	It turns out that everyone got confused by the name trio.hazmat.
So that name has been deprecated, and the new name is
trio.lowlevel. (#476 [https://github.com/python-trio/trio/issues/476])

	Most of the public classes that Trio exports – like trio.Lock,
trio.SocketStream, and so on – weren’t designed with subclassing in
mind. And we’ve noticed that some users were trying to subclass them
anyway, and ending up with fragile code that we’re likely to
accidentally break in the future, or else be stuck unable to make
changes for fear of breaking subclasses.

There are also some classes that were explicitly designed to be
subclassed, like the ones in trio.abc. Subclassing these is still
supported. However, for all other classes, attempts to subclass will
now raise a deprecation warning, and in the future will raise an
error.

If this causes problems for you, feel free to drop by our chat room [https://gitter.im/python-trio/general] or file a bug, to discuss
alternatives or make a case for why some particular class should be
designed to support subclassing. (#1044 [https://github.com/python-trio/trio/issues/1044])

	If you want to create a trio.Process object, you now have to call
trio.open_process; calling trio.Process() directly was
deprecated in v0.12.0 and has now been removed. (#1109 [https://github.com/python-trio/trio/issues/1109])

	Remove clear method on trio.Event: it was deprecated in 0.12.0. (#1498 [https://github.com/python-trio/trio/issues/1498])

Trio 0.14.0 (2020-04-27)

Features

	If you’re using Trio’s low-level interfaces like
trio.hazmat.wait_readable or similar, and then you close a socket or
file descriptor, you’re supposed to call trio.hazmat.notify_closing
first so Trio can clean up properly. But what if you forget? In the
past, Trio would tend to either deadlock or explode spectacularly.
Now, it’s much more robust to this situation, and should generally
survive. (But note that “survive” is not the same as “give you the
results you were expecting”, so you should still call
notify_closing when appropriate. This is about harm
reduction and making it easier to debug this kind of mistake, not
something you should rely on.)

If you’re using higher-level interfaces outside of the trio.hazmat
module, then you don’t need to worry about any of this; those
interfaces already take care of calling notify_closing
for you. (#1272 [https://github.com/python-trio/trio/issues/1272])

Bugfixes

	A bug related to the following methods has been introduced in version 0.12.0:

	trio.Path.iterdir

	trio.Path.glob

	trio.Path.rglob

The iteration of the blocking generators produced by pathlib was performed in
the trio thread. With this fix, the previous behavior is restored: the blocking
generators are converted into lists in a thread dedicated to blocking IO calls. (#1308 [https://github.com/python-trio/trio/issues/1308])

Deprecations and Removals

	Deprecate Python 3.5 (#1408 [https://github.com/python-trio/trio/pull/1408])

	Remove trio.open_cancel_scope which was deprecated in 0.11.0. (#1458 [https://github.com/python-trio/trio/issues/1458])

Trio 0.13.0 (2019-11-02)

Features

	On Windows, the IOCP subsystem [https://docs.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports]
is generally the best way to implement async I/O operations – but it’s
historically been weak at providing select-style readiness
notifications, like trio.hazmat.wait_readable and
wait_writable. We aren’t willing to give those up, so
previously Trio’s Windows backend used a hybrid of select + IOCP.
This was complex, slow, and had limited scalability [https://github.com/python-trio/trio/issues/3].

Fortunately, we found a way to implement wait_* with IOCP, so
Trio’s Windows backend has been completely rewritten, and now uses
IOCP exclusively. As a user, the only difference you should notice is
that Trio should now be faster on Windows, and can handle many more
sockets. This also simplified the code internally, which should allow
for more improvements in the future.

However, this is somewhat experimental, so if you use Windows then
please keep an eye out and let us know if you run into any problems! (#52 [https://github.com/python-trio/trio/issues/52])

	Use slots for memory channel state and statistics which should make memory channels slightly smaller and faster. (#1195 [https://github.com/python-trio/trio/issues/1195])

Bugfixes

	OpenSSL has a bug in its handling of TLS 1.3 session tickets that can
cause deadlocks or data loss in some rare edge cases. These edge cases
most frequently happen during tests. (Upstream bug reports: openssl/openssl#7948 [https://github.com/openssl/openssl/issues/7948], openssl/openssl#7967 [https://github.com/openssl/openssl/issues/7967].) trio.SSLStream
now works around this issue, so you don’t have to worry about it. (#819 [https://github.com/python-trio/trio/issues/819])

	Trio now uses signal.set_wakeup_fd [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd] on all platforms. This is mostly
an internal refactoring with no user-visible effect, but in theory it
should fix a few extremely-rare race conditions on Unix that could
have caused signal delivery to be delayed. (#109 [https://github.com/python-trio/trio/issues/109])

	Trio no longer crashes when an async function is implemented in C or
Cython and then passed directly to trio.run or
nursery.start_soon. (#550 [https://github.com/python-trio/trio/issues/550], #1191 [https://github.com/python-trio/trio/issues/1191])

	When a Trio task makes improper use of a non-Trio async library, Trio now causes an exception to be raised within the task at the point of the error, rather than abandoning the task and raising an error in its parent. This improves debuggability and resolves the TrioInternalError that would sometimes result from the old strategy. (#552 [https://github.com/python-trio/trio/issues/552])

	In 0.12.0 we deprecated trio.run_sync_in_worker_thread in favor of
trio.to_thread.run_sync. But, the deprecation message listed the
wrong name for the replacement. The message now gives the correct name. (#810 [https://github.com/python-trio/trio/issues/810])

	Fix regression introduced with cancellation changes in 0.12.0, where a
trio.CancelScope which isn’t cancelled could catch a propagating
trio.Cancelled exception if shielding were changed while the
cancellation was propagating. (#1175 [https://github.com/python-trio/trio/issues/1175])

	Fix a crash that could happen when using MockClock with autojump
enabled and a non-zero rate. (#1190 [https://github.com/python-trio/trio/issues/1190])

	If you nest >1000 cancel scopes within each other, Trio now handles
that gracefully instead of crashing with a RecursionError. (#1235 [https://github.com/python-trio/trio/issues/1235])

	Fixed the hash behavior of trio.Path to match pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]. Previously trio.Path’s hash was inherited from object [https://docs.python.org/3/library/functions.html#object] instead of from pathlib.PurePath [https://docs.python.org/3/library/pathlib.html#pathlib.PurePath]. Thus, hashing two trio.Path's or a trio.Path and a pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] with the same underlying path would yield different results. (#1259 [https://github.com/python-trio/trio/issues/1259])

Trio 0.12.1 (2019-08-01)

Bugfixes

	In v0.12.0, we accidentally moved BlockingTrioPortal from trio
to trio.hazmat. It’s now been restored to its proper position.
(It’s still deprecated though, and will issue a warning if you use it.) (#1167 [https://github.com/python-trio/trio/issues/1167])

Trio 0.12.0 (2019-07-31)

Features

	If you have a ReceiveStream object, you can now use
async for data in stream: ... instead of calling
receive_some. Each iteration gives an
arbitrary sized chunk of bytes. And the best part is, the loop
automatically exits when you reach EOF, so you don’t have to check for
it yourself anymore. Relatedly, you no longer need to pick a magic
buffer size value before calling
receive_some; you can await
stream.receive_some() with no arguments, and the stream will
automatically pick a reasonable size for you. (#959 [https://github.com/python-trio/trio/issues/959])

	Threading interfaces have been reworked:
run_sync_in_worker_thread is now trio.to_thread.run_sync, and
instead of BlockingTrioPortal, use trio.from_thread.run and
trio.from_thread.run_sync. What’s neat about this is that these
cooperate, so if you’re in a thread created by to_thread.run_sync,
it remembers which Trio created it, and you can call
trio.from_thread.* directly without having to pass around a
BlockingTrioPortal object everywhere. (#810 [https://github.com/python-trio/trio/issues/810])

	We cleaned up the distinction between the “abstract channel interface”
and the “memory channel” concrete implementation.
trio.abc.SendChannel and trio.abc.ReceiveChannel have been slimmed
down, trio.MemorySendChannel and trio.MemoryReceiveChannel are now
public types that can be used in type hints, and there’s a new
trio.abc.Channel interface for future bidirectional channels. (#719 [https://github.com/python-trio/trio/issues/719])

	Add trio.run_process() as a high-level helper for running a process
and waiting for it to finish, like the standard subprocess.run() [https://docs.python.org/3/library/subprocess.html#subprocess.run] does. (#822 [https://github.com/python-trio/trio/issues/822])

	On Linux, when wrapping a bare file descriptor in a Trio socket object,
Trio now auto-detects the correct family, type, and protocol.
This is useful, for example, when implementing systemd socket activation [http://0pointer.de/blog/projects/socket-activation.html]. (#251 [https://github.com/python-trio/trio/issues/251])

	Trio sockets have a new method is_readable that allows
you to check whether a socket is readable. This is useful for HTTP/1.1 clients. (#760 [https://github.com/python-trio/trio/issues/760])

	We no longer use runtime code generation to dispatch core functions
like current_time. Static analysis tools like mypy and pylint should
now be able to recognize and analyze all of Trio’s top-level functions
(though some class attributes are still dynamic… we’re working on it). (#805 [https://github.com/python-trio/trio/issues/805])

	Add trio.hazmat.FdStream for wrapping a Unix file descriptor as a Stream. (#829 [https://github.com/python-trio/trio/issues/829])

	Trio now gives a reasonable traceback and error message in most cases
when its invariants surrounding cancel scope nesting have been
violated. (One common source of such violations is an async generator
that yields within a cancel scope.) The previous behavior was an
inscrutable chain of TrioInternalErrors. (#882 [https://github.com/python-trio/trio/issues/882])

	MultiError now defines its exceptions attribute in __init__()
to better support linters and code autocompletion. (#1066 [https://github.com/python-trio/trio/issues/1066])

	Use __slots__ in more places internally, which should make Trio slightly faster. (#984 [https://github.com/python-trio/trio/issues/984])

Bugfixes

	Destructor methods (__del__) are now protected against KeyboardInterrupt. (#676 [https://github.com/python-trio/trio/issues/676])

	The trio.Path methods glob() and
rglob() now return iterables of trio.Path
(not pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]). (#917 [https://github.com/python-trio/trio/issues/917])

	Inspecting the cancel_called attribute of a
not-yet-exited cancel scope whose deadline is in the past now always
returns True, like you might expect. (Previously it would return
False for not-yet-entered cancel scopes, and for active cancel
scopes until the first checkpoint after their deadline expiry.) (#958 [https://github.com/python-trio/trio/issues/958])

	The trio.Path classmethods, home() and
cwd(), are now async functions. Previously, a bug
in the forwarding logic meant cwd() was synchronous
and home() didn’t work at all. (#960 [https://github.com/python-trio/trio/issues/960])

	An exception encapsulated within a MultiError doesn’t need to be
hashable anymore.

Note

This is only supported if you are running python >= 3.6.4. You can
refer to this github PR [https://github.com/python/cpython/pull/4014]
for details. (#1005 [https://github.com/python-trio/trio/issues/1005])

Improved Documentation

	To help any user reading through Trio’s function implementations, start using public names (not _core) whenever possible. (#1017 [https://github.com/python-trio/trio/issues/1017])

Deprecations and Removals

	The clear method on trio.Event has been deprecated. (#637 [https://github.com/python-trio/trio/issues/637])

	BlockingTrioPortal has been deprecated in favor of the new
trio.from_thread. (#810 [https://github.com/python-trio/trio/issues/810])

	run_sync_in_worker_thread is deprecated in favor of
trio.to_thread.run_sync. (#810 [https://github.com/python-trio/trio/issues/810])

	current_default_worker_thread_limiter is deprecated in favor of
trio.to_thread.current_default_thread_limiter. (#810 [https://github.com/python-trio/trio/issues/810])

	Give up on trying to have different low-level waiting APIs on Unix and
Windows. All platforms now have trio.hazmat.wait_readable,
trio.hazmat.wait_writable, and
trio.hazmat.notify_closing. The old
platform-specific synonyms wait_socket_*,
notify_socket_closing, and notify_fd_closing have been
deprecated. (#878 [https://github.com/python-trio/trio/issues/878])

	It turns out that it’s better to treat subprocess spawning as an async
operation. Therefore, direct construction of Process objects has
been deprecated. Use trio.open_process instead. (#1109 [https://github.com/python-trio/trio/issues/1109])

Miscellaneous internal changes

	The plumbing of Trio’s cancellation system has been substantially overhauled
to improve performance and ease future planned improvements. Notably, there is
no longer any internal concept of a “cancel stack”, and checkpoints now take
constant time regardless of the cancel scope nesting depth. (#58 [https://github.com/python-trio/trio/issues/58])

	We’ve slightly relaxed our definition of which Trio operations act as
checkpoints. A Trio async function that exits by
throwing an exception is no longer guaranteed to execute a checkpoint;
it might or might not. The rules are unchanged for async functions that
don’t exit with an exception, async iterators, and async context managers.
trio.testing.assert_checkpoints() has been updated to reflect the
new behavior: if its with block exits with an exception, no assertion
is made. (#474 [https://github.com/python-trio/trio/issues/474])

	Calling str on a trio.Cancelled exception object returns “Cancelled” instead of an empty string. (#674 [https://github.com/python-trio/trio/issues/674])

	Change the default timeout in trio.open_tcp_stream() to 0.250 seconds, for consistency with RFC 8305. (#762 [https://github.com/python-trio/trio/issues/762])

	On win32 we no longer set SO_EXCLUSIVEADDRUSE when binding a socket in trio.open_tcp_listeners. (#928 [https://github.com/python-trio/trio/issues/928])

	Any attempt to inherit from CancelScope or Nursery now raises
TypeError [https://docs.python.org/3/library/exceptions.html#TypeError]. (Trio has never been able to safely support subclassing
here; this change just makes it more obvious.)
Also exposed as public classes for type-checking, etc. (#1021 [https://github.com/python-trio/trio/issues/1021])

Trio 0.11.0 (2019-02-09)

Features

	Add support for “unbound cancel scopes”: you can now construct a
trio.CancelScope without entering its context, e.g., so you
can pass it to another task which will use it to wrap some work that
you want to be able to cancel from afar. (#607 [https://github.com/python-trio/trio/issues/607])

	The test suite now passes with openssl v1.1.1. Unfortunately this
required temporarily disabling TLS v1.3 during tests; see openssl bugs
#7948 [https://github.com/openssl/openssl/issues/7948] and #7967 [https://github.com/openssl/openssl/issues/7967]. We believe TLS
v1.3 should work in most real use cases, but will be monitoring the
situation. (#817 [https://github.com/python-trio/trio/issues/817])

	Add trio.Process.stdio, which is a StapledStream of
stdin and stdout if both of those
are available, and None otherwise. This is intended to make it more
ergonomic to speak a back-and-forth protocol with a subprocess. (#862 [https://github.com/python-trio/trio/issues/862])

	trio.Process on POSIX systems no longer accepts the error-prone
combination of shell=False with a command that’s a single string,
or shell=True with a command that’s a sequence of strings.
These forms are accepted by the underlying subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen]
constructor but don’t do what most users expect. Also, added an explanation
of quoting to the documentation. (#863 [https://github.com/python-trio/trio/issues/863])

	Added an internal mechanism for pytest-trio’s
Hypothesis [https://hypothesis.readthedocs.io] integration
to make the task scheduler reproducible and avoid flaky tests. (#890 [https://github.com/python-trio/trio/issues/890])

	SendChannel, ReceiveChannel, Listener,
and open_memory_channel() can now be referenced using a generic type parameter
(the type of object sent over the channel or produced by the listener) using PEP 484 syntax:
trio.abc.SendChannel[bytes], trio.abc.Listener[trio.SocketStream],
trio.open_memory_channel[MyMessage](5), etc. The added type information does not change
the runtime semantics, but permits better integration with external static type checkers. (#908 [https://github.com/python-trio/trio/issues/908])

Bugfixes

	Fixed several bugs in the new Unix subprocess pipe support, where
(a) operations on a closed pipe could accidentally affect another
unrelated pipe due to internal file-descriptor reuse, (b) in very rare
circumstances, two tasks calling send_all on the same pipe at the
same time could end up with intermingled data instead of a
BusyResourceError. (#661 [https://github.com/python-trio/trio/issues/661])

	Stop trio.open_tcp_listeners() from crashing on systems that have
disabled IPv6. (#853 [https://github.com/python-trio/trio/issues/853])

	Fixed support for multiple tasks calling trio.Process.wait()
simultaneously; on kqueue platforms it would previously raise an exception. (#854 [https://github.com/python-trio/trio/issues/854])

	trio.Cancelled exceptions now always propagate until they reach
the outermost unshielded cancelled scope, even if more cancellations
occur or shielding is changed between when the Cancelled
is delivered and when it is caught. (#860 [https://github.com/python-trio/trio/issues/860])

	If you have a SocketStream that’s already been closed, then
await socket_stream.send_all(b"") will now correctly raise
ClosedResourceError. (#874 [https://github.com/python-trio/trio/issues/874])

	Simplified the Windows subprocess pipe send_all code, and in the
process fixed a theoretical bug where closing a pipe at just the wrong
time could produce errors or cause data to be redirected to the wrong
pipe. (#883 [https://github.com/python-trio/trio/issues/883])

Deprecations and Removals

	Deprecate trio.open_cancel_scope in favor of trio.CancelScope,
which more clearly reflects that creating a cancel scope is just an ordinary
object construction and does not need to be immediately paired with entering it. (#607 [https://github.com/python-trio/trio/issues/607])

	The submodules trio.ssl and trio.subprocess are now deprecated.
Their nontrivial contents (Process, SSLStream,
and SSLListener) have been moved to the main trio
namespace. For the numerous constants, exceptions, and other helpers
that were previously reexported from the standard ssl [https://docs.python.org/3/library/ssl.html#module-ssl] and
subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess] modules, you should now use those modules directly. (#852 [https://github.com/python-trio/trio/issues/852])

	Remove all the APIs deprecated in 0.9.0 or earlier (trio.Queue,
trio.catch_signals(), trio.BrokenStreamError, and
trio.ResourceBusyError), except for trio.hazmat.UnboundedQueue,
which stays for now since it is used by the obscure lowlevel functions
monitor_completion_queue() and monitor_kevent(). (#918 [https://github.com/python-trio/trio/issues/918])

Miscellaneous internal changes

	Entering a cancel scope whose deadline is in the past now immediately
cancels it, so Cancelled will be raised by the first
checkpoint in the cancel scope rather than the second one.
This also affects constructs like with trio.move_on_after(0):. (#320 [https://github.com/python-trio/trio/issues/320])

Trio 0.10.0 (2019-01-07)

Features

	Initial subprocess support. Add
trio.subprocess.Process, an async wrapper around the stdlib
subprocess.Popen [https://docs.python.org/3/library/subprocess.html#subprocess.Popen] class, which permits spawning subprocesses and
communicating with them over standard Trio streams. trio.subprocess
also reexports all the stdlib subprocess [https://docs.python.org/3/library/subprocess.html#module-subprocess] exceptions and constants for
convenience. (#4 [https://github.com/python-trio/trio/issues/4])

	You can now create an unbounded CapacityLimiter by initializing with
math.inf [https://docs.python.org/3/library/math.html#math.inf] (#618 [https://github.com/python-trio/trio/issues/618])

	New trio.hazmat features to allow cleanly switching live coroutine
objects between Trio and other coroutine runners. Frankly, we’re not even
sure this is a good idea, but we want to try it out in trio-asyncio [https://github.com/python-trio/trio-asyncio/issues/42], so here we are.
For details see Handing off live coroutine objects between coroutine runners. (#649 [https://github.com/python-trio/trio/issues/649])

Bugfixes

	Fixed a race condition on macOS, where Trio’s TCP listener would crash if an
incoming TCP connection was closed before the listener had a chance to accept
it. (#609 [https://github.com/python-trio/trio/issues/609])

	trio.open_tcp_stream() has been refactored to clean up unsuccessful
connection attempts more reliably. (#809 [https://github.com/python-trio/trio/issues/809])

Deprecations and Removals

	Remove the APIs deprecated in 0.5.0. (ClosedStreamError,
ClosedListenerError, Result) (#812 [https://github.com/python-trio/trio/issues/812])

Miscellaneous internal changes

	There are a number of methods on trio.ssl.SSLStream
that report information about the negotiated TLS connection, like
selected_alpn_protocol, and thus cannot succeed until after the handshake
has been performed. Previously, we returned None from these methods, like the
stdlib ssl [https://docs.python.org/3/library/ssl.html#module-ssl] module does, but this is confusing, because that can also
be a valid return value. Now we raise trio.ssl.NeedHandshakeError
instead. (#735 [https://github.com/python-trio/trio/issues/735])

Trio 0.9.0 (2018-10-12)

Features

	New and improved APIs for inter-task communication:
trio.abc.SendChannel, trio.abc.ReceiveChannel, and
trio.open_memory_channel() (which replaces trio.Queue). This
interface uses separate “sender” and “receiver” objects, for
consistency with other communication interfaces like
Stream. Also, the two objects can now be closed
individually, making it much easier to gracefully shut down a channel.
Also, check out the nifty clone API to make it easy to manage
shutdown in multiple-producer/multiple-consumer scenarios. Also, the
API has been written to allow for future channel implementations that
send objects across process boundaries. Also, it supports unbounded
buffering if you really need it. Also, help I can’t stop writing also.
See Using channels to pass values between tasks for more details. (#497 [https://github.com/python-trio/trio/issues/497])

Deprecations and Removals

	trio.Queue and trio.hazmat.UnboundedQueue have been deprecated, in
favor of trio.open_memory_channel(). (#497 [https://github.com/python-trio/trio/issues/497])

Trio 0.8.0 (2018-10-01)

Features

	Trio’s default internal clock is now based on time.perf_counter() [https://docs.python.org/3/library/time.html#time.perf_counter]
instead of time.monotonic() [https://docs.python.org/3/library/time.html#time.monotonic]. This makes time-keeping more precise on
Windows, and has no effect on other platforms. (#33 [https://github.com/python-trio/trio/issues/33])

	Reworked trio, trio.testing, and trio.socket namespace
construction, making them more understandable by static analysis tools. This
should improve tab completion in editors, reduce false positives from pylint,
and is a first step towards providing type hints. (#542 [https://github.com/python-trio/trio/issues/542])

Deprecations and Removals

	ResourceBusyError is now a deprecated alias for the new
BusyResourceError, and BrokenStreamError is a deprecated alias for
the new BrokenResourceError. (#620 [https://github.com/python-trio/trio/issues/620])

Trio 0.7.0 (2018-09-03)

Features

	The length of typical exception traces coming from Trio has been
greatly reduced. This was done by eliminating many of the exception
frames related to details of the implementation. For examples, see
the blog post [https://vorpus.org/blog/beautiful-tracebacks-in-trio-v070/].
(#56 [https://github.com/python-trio/trio/issues/56])

	New and improved signal catching API: open_signal_receiver(). (#354 [https://github.com/python-trio/trio/issues/354])

	The low level trio.hazmat.wait_socket_readable,
wait_socket_writable, and
notify_socket_close now work on bare socket descriptors,
instead of requiring a socket.socket() object. (#400 [https://github.com/python-trio/trio/issues/400])

	If you’re using trio.hazmat.wait_task_rescheduled and other low-level
routines to implement a new sleeping primitive, you can now use the new
trio.hazmat.Task.custom_sleep_data attribute to pass arbitrary data
between the sleeping task, abort function, and waking task. (#616 [https://github.com/python-trio/trio/issues/616])

Bugfixes

	Prevent crashes when used with Sentry (raven-python). (#599 [https://github.com/python-trio/trio/issues/599])

	The nursery context manager was rewritten to avoid use of
@asynccontextmanager and @async_generator. This reduces extraneous frames
in exception traces and addresses bugs regarding StopIteration [https://docs.python.org/3/library/exceptions.html#StopIteration] and
StopAsyncIteration [https://docs.python.org/3/library/exceptions.html#StopAsyncIteration] exceptions not propagating correctly. (#612 [https://github.com/python-trio/trio/issues/612])

	Updates the formatting of exception messages raised by
trio.open_tcp_stream() to correctly handle a hostname passed in as
bytes, by converting the hostname to a string. (#633 [https://github.com/python-trio/trio/issues/633])

Deprecations and Removals

	trio.catch_signals has been deprecated in favor of
open_signal_receiver(). The main differences are: it takes
*-args now to specify the list of signals (so
open_signal_receiver(SIGINT) instead of
catch_signals({SIGINT})), and, the async iterator now yields
individual signals, instead of “batches” (#354 [https://github.com/python-trio/trio/issues/354])

	Remove all the APIs deprecated in 0.3.0 and 0.4.0. (#623 [https://github.com/python-trio/trio/issues/623])

Trio 0.6.0 (2018-08-13)

Features

	Add trio.hazmat.WaitForSingleObject async function to await Windows
handles. (#233 [https://github.com/python-trio/trio/issues/233])

	The sniffio [https://github.com/python-trio/sniffio] library can now
detect when Trio is running. (#572 [https://github.com/python-trio/trio/issues/572])

Bugfixes

	Make trio.socket._SocketType.connect always close the socket on
cancellation (#247 [https://github.com/python-trio/trio/issues/247])

	Fix a memory leak in trio.CapacityLimiter, that could occur when
acquire or acquire_on_behalf_of was cancelled. (#548 [https://github.com/python-trio/trio/issues/548])

	Some version of macOS have a buggy getaddrinfo that was causing spurious
test failures; we now detect those systems and skip the relevant test when
found. (#580 [https://github.com/python-trio/trio/issues/580])

	Prevent crashes when used with Sentry (raven-python). (#599 [https://github.com/python-trio/trio/issues/599])

Trio 0.5.0 (2018-07-20)

Features

	Suppose one task is blocked trying to use a resource – for example, reading
from a socket – and while it’s doing this, another task closes the resource.
Previously, this produced undefined behavior. Now, closing a resource causes
pending operations on that resource to terminate immediately with a
ClosedResourceError. ClosedStreamError and ClosedListenerError
are now aliases for ClosedResourceError, and deprecated. For this to
work, Trio needs to know when a resource has been closed. To facilitate this,
new functions have been added: trio.hazmat.notify_fd_close and
trio.hazmat.notify_socket_close. If you’re using Trio’s built-in
wrappers like SocketStream or trio.socket, then you don’t
need to worry about this, but if you’re using the low-level functions like
trio.hazmat.wait_readable, you should make sure to call these
functions at appropriate times. (#36 [https://github.com/python-trio/trio/issues/36])

	Tasks created by spawn_system_task() now no longer inherit
the creator’s contextvars [https://docs.python.org/3/library/contextvars.html#module-contextvars] context, instead using one created at
run(). (#289 [https://github.com/python-trio/trio/issues/289])

	Add support for trio.Queue with capacity=0. Queue’s implementation
is also faster now. (#473 [https://github.com/python-trio/trio/issues/473])

	Switch to using standalone Outcome [https://github.com/python-trio/outcome] library for Result objects.
(#494 [https://github.com/python-trio/trio/issues/494])

Deprecations and Removals

	trio.hazmat.Result, trio.hazmat.Value and
trio.hazmat.Error have been replaced by the equivalent
classes in the Outcome [https://github.com/python-trio/outcome] library.

Trio 0.4.0 (2018-04-10)

Features

	Add unix client socket support. (#401 [https://github.com/python-trio/trio/issues/401])

	Add support for contextvars [https://docs.python.org/3/library/contextvars.html#module-contextvars] (see task-local storage), and add trio.hazmat.RunVar as a similar API
for run-local variables. Deprecate trio.TaskLocal and
trio.hazmat.RunLocal in favor of these new APIs. (#420 [https://github.com/python-trio/trio/issues/420])

	Add trio.hazmat.current_root_task to get the root task. (#452 [https://github.com/python-trio/trio/issues/452])

Bugfixes

	Fix KeyboardInterrupt handling when threading state has been modified by a
3rd-party library. (#461 [https://github.com/python-trio/trio/issues/461])

Deprecations and Removals

	Attempting to explicitly raise trio.Cancelled will cause a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError].
cancel_scope.cancel() should
be used instead. (#342 [https://github.com/python-trio/trio/issues/342])

Miscellaneous internal changes

	Simplify implementation of primitive traps like wait_task_rescheduled()
(#395 [https://github.com/python-trio/trio/issues/395])

Trio 0.3.0 (2017-12-28)

Features

	Simplified nurseries: In Trio, the rule used to be that “parenting is a
full time job”, meaning that after a task opened a nursery and spawned some
children into it, it had to immediately block in __aexit__ to supervise
the new children, or else exception propagation wouldn’t work. Also there was
some elaborate machinery to let you replace this supervision logic with your
own custom supervision logic. Thanks to new advances in task-rearing
technology, parenting is no longer a full time job! Now the supervision
happens automatically in the background, and essentially the body of a
async with trio.open_nursery() block acts just like a task running inside
the nursery. This is important: it makes it possible for libraries to
abstract over nursery creation. For example, if you have a Websocket library
that needs to run a background task to handle Websocket pings, you can now do
that with async with open_websocket(...) as ws: ..., and that can run a
task in the background without your users having to worry about parenting it.
And don’t worry, you can still make custom supervisors; it turned out all
that spiffy machinery was actually redundant and didn’t provide much value.
(#136 [https://github.com/python-trio/trio/issues/136])

	Trio socket methods like bind and connect no longer require
“pre-resolved” numeric addresses; you can now pass regular hostnames and Trio
will implicitly resolve them for you. (#377 [https://github.com/python-trio/trio/issues/377])

Bugfixes

	Fixed some corner cases in Trio socket method implicit name resolution to
better match stdlib behavior. Example: sock.bind(("", port)) now binds to
the wildcard address instead of raising an error. (#277 [https://github.com/python-trio/trio/issues/277])

Deprecations and Removals

	Removed everything that was deprecated in 0.2.0; see the 0.2.0
release notes below for details.

	As was foretold in the v0.2.0 release notes, the bind method on Trio
sockets is now async. Please update your calls or – better yet – switch to
our shiny new high-level networking API, like serve_tcp(). (#241 [https://github.com/python-trio/trio/issues/241])

	The resolve_local_address and resolve_remote_address methods
on Trio sockets have been deprecated; these are unnecessary now that
you can just pass your hostnames directly to the socket methods you
want to use. (#377 [https://github.com/python-trio/trio/issues/377])

Trio 0.2.0 (2017-12-06)

Trio 0.2.0 contains changes from 14 contributors, and brings major new
features and bug fixes, as well as a number of deprecations and a very
small number of backwards incompatible changes. We anticipate that
these should be easy to adapt to, but make sure to read about them
below, and if you’re using Trio then remember to read and subscribe
to issue #1 [https://github.com/python-trio/trio/issues/1].

Highlights

	Added a comprehensive API for async filesystem I/O: see
Asynchronous filesystem I/O (gh-20 [https://github.com/python-trio/trio/pull/20])

	The new nursery start() method makes it
easy to perform controlled start-up of long-running tasks. For
example, given an appropriate http_server_on_random_open_port
function, you could write:

port = await nursery.start(http_server_on_random_open_port)

and this would start the server running in the background in the
nursery, and then give you back the random port it selected – but
not until it had finished initializing and was ready to accept
requests!

	Added a new abstract API for byte streams, and trio.testing gained helpers for
creating fake streams for testing your protocol implementation and checking that your custom stream
implementation follows the stream contract.

	If you’re currently using trio.socket then you should
switch to using our new high-level networking API instead. It takes care of many tiresome details, it’s
fully integrated with the abstract stream API, and it provides
niceties like a state-of-the-art Happy Eyeballs implementation [https://en.wikipedia.org/wiki/Happy_Eyeballs] in
open_tcp_stream() and server helpers that integrate with
nursery.start.

	We’ve also added comprehensive support for SSL/TLS encryption,
including SNI (both client and server side), STARTTLS, renegotiation
during full-duplex usage (subject to OpenSSL limitations), and
applying encryption to arbitrary Streams, which
allows for interesting applications like TLS-over-TLS [https://daniel.haxx.se/blog/2016/11/26/https-proxy-with-curl/].
See: trio.open_ssl_over_tcp_stream(),
trio.serve_ssl_over_tcp(),
trio.open_ssl_over_tcp_listeners(), and trio.ssl.

Interesting fact: the test suite for trio.ssl has so far
found bugs in CPython’s ssl module, PyPy’s ssl module, PyOpenSSL,
and OpenSSL. (trio.ssl doesn’t use PyOpenSSL.) Trio’s test
suite is fairly thorough.

	You know thread-local storage? Well, Trio now has an equivalent:
task-local storage. There’s also the
related, but more obscure, run-local storage; see
RunLocal. (#2 [https://github.com/python-trio/trio/pull/2])

	Added a new guide to for contributors.

Breaking changes and deprecations

Trio is a young and ambitious project, but it also aims to become a
stable, production-quality foundation for async I/O in Python.
Therefore, our approach for now is to provide deprecation warnings
where-ever possible, but on a fairly aggressive cycle as we push
towards stability. If you use Trio you should read and subscribe to
issue #1 [https://github.com/python-trio/trio/issues/1]. We’d also
welcome feedback on how this approach is working, whether our
deprecation warnings could be more helpful, or anything else.

The tl;dr is: stop using socket.bind if you can, and then fix
everything your test suite warns you about.

Upcoming breaking changes without warnings (i.e., stuff that works in
0.2.0, but won’t work in 0.3.0):

	In the next release, the bind method on Trio socket objects will
become async (#241 [https://github.com/python-trio/trio/issues/241]). Unfortunately,
there’s no good way to provide a warning here. We recommend
switching to the new highlevel networking APIs like
serve_tcp(), which will insulate you from this change.

Breaking changes (i.e., stuff that could theoretically break a program
that worked on 0.1.0):

	trio.socket no longer attempts to normalize or modernize
socket options across different platforms. The high-level networking
API now handles that, freeing trio.socket to focus on giving
you raw, unadulterated BSD sockets.

	When a socket sendall call was cancelled, it used to attach some
metadata to the exception reporting how much data was actually sent.
It no longer does this, because in common configurations like an
SSLStream wrapped around a
SocketStream it becomes ambiguous which “level” the
partial metadata applies to, leading to confusion and bugs. There is
no longer any way to tell how much data was sent after a sendall
is cancelled.

	The trio.socket.getprotobyname() function is now async, like
it should have been all along. I doubt anyone will ever use it, but
that’s no reason not to get the details right.

	The trio.socket functions getservbyport,
getservbyname, and getfqdn have been removed, because they
were obscure, buggy, and obsolete. Use
getaddrinfo() instead.

Upcoming breaking changes with warnings (i.e., stuff that in 0.2.0
will work but will print loud complaints, and that won’t work in
0.3.0):

	For consistency with the new start method, the nursery spawn
method is being renamed to start_soon (#284 [https://github.com/python-trio/trio/issues/284])

	trio.socket.sendall is deprecated; use trio.open_tcp_stream
and SocketStream.send_all instead (#291 [https://github.com/python-trio/trio/issues/291])

	Trio now consistently uses run for functions that take and run
an async function (like trio.run()!), and run_sync for
functions that take and run a synchronous function. As part of this:

	run_in_worker_thread is becoming
run_sync_in_worker_thread

	We took the opportunity to refactor run_in_trio_thread and
await_in_trio_thread into the new class
trio.BlockingTrioPortal

	The hazmat function current_call_soon_thread_and_signal_safe
is being replaced by trio.hazmat.TrioToken

See #68 [https://github.com/python-trio/trio/issues/68] for
details.

	trio.Queue's join and task_done methods are
deprecated without replacement (#321 [https://github.com/python-trio/trio/issues/321])

	Trio 0.1.0 provided a set of built-in mechanisms for waiting for and
tracking the result of individual tasks. We haven’t yet found any
cases where using this actually led to simpler code, though, and
this feature is blocking useful improvements, so the following are
being deprecated without replacement:

	nursery.zombies

	nursery.monitor

	nursery.reap

	nursery.reap_and_unwrap

	task.result

	task.add_monitor

	task.discard_monitor

	task.wait

This also lets us move a number of lower-level features out of the
main trio namespace and into trio.hazmat:

	trio.Task → trio.hazmat.Task

	trio.current_task → trio.hazmat.current_task

	trio.Result → trio.hazmat.Result

	trio.Value → trio.hazmat.Value

	trio.Error → trio.hazmat.Error

	trio.UnboundedQueue → trio.hazmat.UnboundedQueue

In addition, several introspection attributes are being renamed:

	nursery.children → nursery.child_tasks

	task.parent_task → use task.parent_nursery.parent_task instead

See #136 [https://github.com/python-trio/trio/issues/136] for
more details.

	To consolidate introspection functionality in trio.hazmat,
the following functions are moving:

	trio.current_clock → trio.hazmat.current_clock

	trio.current_statistics →
trio.hazmat.current_statistics

See #317 [https://github.com/python-trio/trio/issues/317] for
more details.

	It was decided that 0.1.0’s “yield point” terminology was confusing;
we now use “checkpoint” instead. As part of
this, the following functions in trio.hazmat are changing
names:

	yield_briefly → ~trio.hazmat.checkpoint

	yield_briefly_no_cancel → cancel_shielded_checkpoint()

	yield_if_cancelled → checkpoint_if_cancelled()

	yield_indefinitely → wait_task_rescheduled()

In addition, the following functions in trio.testing are
changing names:

	assert_yields → assert_checkpoints()

	assert_no_yields → assert_no_checkpoints()

See #157 [https://github.com/python-trio/trio/issues/157] for
more details.

	trio.format_exception is deprecated; use
traceback.format_exception() [https://docs.python.org/3/library/traceback.html#traceback.format_exception] instead (#347 [https://github.com/python-trio/trio/pull/347]).

	trio.current_instruments is deprecated. For adding or removing
instrumentation at run-time, see trio.hazmat.add_instrument
and trio.hazmat.remove_instrument (#257 [https://github.com/python-trio/trio/issues/257])

Unfortunately, a limitation in PyPy3 5.8 breaks our deprecation
handling for some renames. (Attempting to use the old names will give
an unhelpful error instead of a helpful warning.) This does not affect
CPython, or PyPy3 5.9+.

Other changes

	run_sync_in_worker_thread now has a robust mechanism
for applying capacity limits to the number of concurrent threads (#10 [https://github.com/python-trio/trio/issues/170], #57 [https://github.com/python-trio/trio/issues/57], #156 [https://github.com/python-trio/trio/issues/156])

	New support for tests to cleanly hook hostname lookup and socket
operations: see Virtual networking for testing. In addition,
trio.socket.SocketType is now an empty abstract base class, with
the actual socket class made private. This shouldn’t effect anyone,
since the only thing you could directly use it for in the first
place was isinstance checks, and those still work (#170 [https://github.com/python-trio/trio/issues/170])

	New class StrictFIFOLock

	New exception ResourceBusyError

	The trio.hazmat.ParkingLot class (which is used to
implement many of Trio’s synchronization primitives) was rewritten
to be simpler and faster (#272 [https://github.com/python-trio/trio/issues/272], #287 [https://github.com/python-trio/trio/issues/287])

	It’s generally true that if you’re using Trio you have to use Trio
functions, if you’re using asyncio you have to use asyncio
functions, and so forth. (See the discussion of the “async sandwich”
in the Trio tutorial for more details.) So for example, this isn’t
going to work:

async def main():
 # asyncio here
 await asyncio.sleep(1)

trio here
trio.run(main)

Trio now reliably detects if you accidentally do something like
this, and gives a helpful error message.

	Trio now also has special error messages for several other common
errors, like doing trio.run(some_func()) (should be
trio.run(some_func)).

	trio.socket now handles non-ascii domain names using the
modern IDNA 2008 standard instead of the obsolete IDNA 2003 standard
(#11 [https://github.com/python-trio/trio/issues/11])

	When an Instrument raises an unexpected error, we
now route it through the logging [https://docs.python.org/3/library/logging.html#module-logging] module instead of printing
it directly to stderr. Normally this produces exactly the same
effect, but this way it’s more configurable. (#306 [https://github.com/python-trio/trio/issues/306])

	Fixed a minor race condition in IOCP thread shutdown on Windows
(#81 [https://github.com/python-trio/trio/issues/81])

	Control-C handling on Windows now uses signal.set_wakeup_fd() [https://docs.python.org/3/library/signal.html#signal.set_wakeup_fd]
and should be more reliable (#42 [https://github.com/python-trio/trio/issues/42])

	trio.run() takes a new keyword argument
restrict_keyboard_interrupt_to_checkpoints

	New attributes allow more detailed introspection of the task tree:
nursery.child_tasks, Task.child_nurseries,
nursery.parent_task, Task.parent_nursery

	trio.testing.wait_all_tasks_blocked() now takes a
tiebreaker= argument. The main use is to allow
MockClock's auto-jump functionality to avoid
interfering with direct use of
wait_all_tasks_blocked() in the same test.

	MultiError.catch() now correctly preserves __context__,
despite Python’s best attempts to stop us (#165 [https://github.com/python-trio/trio/issues/165])

	It is now possible to take weakrefs to Lock and many other
classes (#331 [https://github.com/python-trio/trio/issues/331])

	Fix sock.accept() for IPv6 sockets (#164 [https://github.com/python-trio/trio/issues/164])

	PyCharm (and hopefully other IDEs) can now offer better completions
for the trio and trio.hazmat modules (#314 [https://github.com/python-trio/trio/issues/314])

	Trio now uses yapf [https://github.com/google/yapf] to
standardize formatting across the source tree, so we never have to
think about whitespace again.

	Many documentation improvements

Trio 0.1.0 (2017-03-10)

	Initial release.

Contributing to Trio and related projects

So you’re interested in contributing to Trio or one of our associated
projects [https://github.com/python-trio]? That’s awesome! Trio is
an open-source project maintained by an informal group of
volunteers. Our goal is to make async I/O in Python more fun, easy,
and reliable, and we can’t do it without help from people like you. We
welcome contributions from anyone willing to work in good faith with
other contributors and the community (see also our
Code of Conduct).

There are many ways to contribute, no contribution is too small, and
all contributions are valued. For example, you could:

	Hang out in our chatroom [https://gitter.im/python-trio/general]
and help people with questions.

	Sign up for our forum [https://trio.discourse.group], set up
your notifications so you notice interesting conversations, and join
in.

	Answer questions on StackOverflow (recent questions [https://stackexchange.com/filters/289914/trio-project-tags-on-stackoverflow-filter]).

	Use Trio in a project, and give us feedback on what worked and what
didn’t.

	Write a blog post about your experiences with Trio, good or bad.

	Release open-source programs and libraries that use Trio.

	Improve documentation.

	Comment on issues.

	Add tests.

	Fix bugs.

	Add features.

We want contributing to be enjoyable and mutually beneficial; this
document tries to give you some tips to help that happen, and applies
to all of the projects under the python-trio organization on Github [https://github.com/python-trio]. If you have thoughts on how it
can be improved then please let us know.

Getting started

If you’re new to open source in general, you might find it useful to
check out opensource.guide’s How to Contribute to Open Source
tutorial [https://opensource.guide/how-to-contribute/], or if
video’s more your thing, egghead.io has a short free video course [https://egghead.io/courses/how-to-contribute-to-an-open-source-project-on-github].

Trio and associated projects are developed on GitHub, under the
python-trio [https://github.com/python-trio] organization. Code
and documentation changes are made through pull requests (see
Preparing pull requests below).

We also have an unusual policy for managing commit rights: anyone
whose pull request is merged is automatically invited to join the
GitHub organization, and gets commit rights to all of our
repositories. See Joining the team below for more details.

If you’re looking for a good place to start, then check out our issues
labeled good first issue [https://github.com/search?utf8=%E2%9C%93&q=user%3Apython-trio+label%3A%22good+first+issue%22+state%3Aopen&type=Issues&ref=advsearch&l=&l=],
or feel free to ask on the forum [https://trio.discourse.group] or
in chat [https://gitter.im/python-trio/general].

Providing support

When helping others use Trio, please remember that you are
representing our community, and we want this to be a friendly and
welcoming place.

Concurrency is really confusing when you’re first learning. When
talking to beginners, remember that you were a beginner once too, and
the whole goal here is to make a top-tier concurrency library that’s
accessible to everyone and a joy to use. If people are showing up with
beginner questions, that means we’re succeeding. How we respond to
questions is part of that developer experience, just as much as our
API, documentation, or testing tools. And as a bonus, helping
beginners is often the best way to discover ideas for improvements. If
you start getting burned out and cranky, we’ve all been there, and
it’s OK to take a break until you feel better. But it’s not OK to take
that out on random users.

Please remember that the authors and users of competing projects are
smart, thoughtful people doing their best to balance complicated and
conflicting requirements, just like us. Of course it’s totally fine to
make specific technical critiques (“In project X, this is handled by
doing Y, Trio does Z instead, which I prefer because…”) or talk
about your personal experience (“I tried using X but I got super
frustrated and confused”), but refrain from generic statements like “X
sucks” or “I can’t believe anyone uses X”.

Please try not to make assumptions about people’s gender, and in
particular remember that we’re not all dudes. If you don’t have a
specific reason to assume otherwise, then singular they [https://en.wikipedia.org/wiki/Third-person_pronoun#Singular_they]
makes a fine pronoun, and there are plenty of gender-neutral
collective terms: “Hey folks”, “Hi all”, …

We also like the Recurse Center’s social rules [https://www.recurse.com/manual#sub-sec-social-rules]:

	no feigning surprise (also available in a sweet comic version [https://jvns.ca/blog/2017/04/27/no-feigning-surprise/])

	no well-actually’s

	no subtle -isms (more details [https://www.recurse.com/blog/38-subtle-isms-at-hacker-school])

Preparing pull requests

If you want to submit a documentation or code change to one of the
Trio projects, then that’s done by preparing a Github pull request (or
“PR” for short). We’ll do our best to review your PR quickly. If it’s
been a week or two and you’re still waiting for a response, feel free
to post a comment poking us. (This can just be a comment with the
single word “ping”; it’s not rude at all.)

Here’s a quick checklist for putting together a good PR, with details
in separate sections below:

	What to put in a PR: Does your PR address a single,
self-contained issue?

	Tests: Are your tests passing? Did you add any
necessary tests? Code changes pretty much always require test
changes, because if it’s worth fixing the code then it’s worth
adding a test to make sure it stays fixed.

	Code formatting: If you changed Python code, then did
you run black setup.py trio? (Or for other packages, replace
trio with the package name.)

	Release notes: If your change affects
user-visible functionality, then did you add a release note to the
newsfragments/ directory?

	Documentation: Did you make any necessary documentation
updates?

	License: by submitting a PR to a Trio project, you’re offering your
changes under that project’s license. For most projects, that’s dual
MIT/Apache 2, except for cookiecutter-trio, which is CC0.

What to put in a PR

Each PR should, as much as possible, address just one issue and be
self-contained. If you have ten small, unrelated changes, then go
ahead and submit ten PRs – it’s much easier to review ten small
changes than one big change with them all mixed together, and this way
if there’s some problem with one of the changes it won’t hold up all
the others.

If you’re uncertain about whether a change is a good idea and want
some feedback before putting time into it, feel free to ask in an
issue or in the chat room. If you have a partial change that you want
to get feedback on, feel free to submit it as a PR. (In this case it’s
traditional to start the PR title with [WIP], for “work in
progress”.)

When you are submitting your PR, you can include Closes #123,
Fixes: #123 or
some variation [https://help.github.com/en/articles/closing-issues-using-keywords]
in either your commit message or the PR description, in order to
automatically close the referenced issue when the PR is merged.
This keeps us closer to the desired state where each open issue reflects some
work that still needs to be done.

Tests

We use pytest [https://pytest.org/] for testing. To run the tests
locally, you should run:

cd path/to/trio/checkout/
pip install -r test-requirements.txt # possibly using a virtualenv
pytest trio

This doesn’t try to be completely exhaustive – it only checks that
things work on your machine, and it may skip some slow tests. But it’s
a good way to quickly check that things seem to be working, and we’ll
automatically run the full test suite when your PR is submitted, so
you’ll have a chance to see and fix any remaining issues then.

Every change should have 100% coverage for both code and tests. But,
you can use # pragma: no cover to mark lines where
lack-of-coverage isn’t something that we’d want to fix (as opposed to
it being merely hard to fix). For example:

else: # pragma: no cover
 raise AssertionError("this can't happen!")

We use Codecov to track coverage, because it makes it easy to combine
coverage from running in different configurations. Running coverage
locally can be useful
(pytest --cov=PACKAGENAME --cov-report=html), but don’t be
surprised if you get lower coverage than when looking at Codecov
reports, because there are some lines that are only executed on
Windows, or macOS, or PyPy, or CPython, or… you get the idea. After
you create a PR, Codecov will automatically report back with the
coverage, so you can check how you’re really doing. (But note that the
results can be inaccurate until all the tests are passing. If the
tests failed, then fix that before worrying about coverage.)

Some rules for writing good tests:

	Tests MUST pass deterministically [https://github.com/python-trio/trio/issues/200]. Flakey tests
make for miserable developers. One common source of indeterminism is
scheduler ordering; if you’re having trouble with this, then
trio.testing provides powerful tools to help control
ordering, like trio.testing.wait_all_tasks_blocked(),
trio.testing.Sequencer, and trio.testing.MockClock
(usually used as a fixture: async def
test_whatever(autojump_clock): ...). And if you need more tools
than this then we should add them.

	(Trio package only) Slow tests – anything that takes more than about
0.25 seconds – should be marked with @slow. This makes it so they
only run if you do pytest trio --run-slow. Our CI scripts do
run slow tests, so you can be sure that the code will still be
thoroughly tested, and this way you don’t have to sit around waiting
for a few irrelevant multi-second tests to run while you’re iterating
on a change locally.

You can check for slow tests by passing --durations=10 to
pytest. Most tests should take 0.01 seconds or less.

	Speaking of waiting around for tests: Tests should never sleep
unless absolutely necessary. However, calling trio.sleep()
when using autojump_clock is fine, because that’s not really
sleeping, and doesn’t waste developers time waiting for the test to
run.

	We like tests to exercise real functionality. For example, if you’re
adding subprocess spawning functionality, then your tests should
spawn at least one process! Sometimes this is tricky – for example,
Trio’s KeyboardInterrupt [https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt] tests have to jump through quite
some hoops to generate real SIGINT signals at the right times to
exercise different paths. But it’s almost always worth it.

	For cases where real testing isn’t relevant or sufficient, then we
strongly prefer fakes or stubs over mocks. Useful articles:

	Test Doubles - Fakes, Mocks and Stubs [https://dev.to/milipski/test-doubles---fakes-mocks-and-stubs]

	Mocks aren’t stubs [https://martinfowler.com/articles/mocksArentStubs.html]

	Write test doubles you can trust using verified fakes [https://codewithoutrules.com/2016/07/31/verified-fakes/]

Most major features have both real tests and tests using fakes or
stubs. For example, SSLStream has some tests that
use Trio to make a real socket connection to real SSL server
implemented using blocking I/O, because it sure would be
embarrassing if that didn’t work. And then there are also a bunch of
tests that use a fake in-memory transport stream where we have
complete control over timing and can make sure all the subtle edge
cases work correctly.

Writing reliable tests for obscure corner cases is often harder than
implementing a feature in the first place, but stick with it: it’s
worth it! And don’t be afraid to ask for help. Sometimes a fresh pair
of eyes can be helpful when trying to come up with devious tricks.

Code formatting

Instead of wasting time arguing about code formatting, we use black [https://github.com/psf/black] as well as other tools to automatically
format all our code to a standard style. While you’re editing code you
can be as sloppy as you like about whitespace; and then before you commit,
just run:

pip install -U pre-commit
pre-commit

to fix it up. (And don’t worry if you forget – when you submit a pull
request then we’ll automatically check and remind you.) Hopefully this
will let you focus on more important style issues like choosing good
names, writing useful comments, and making sure your docstrings are
nicely formatted. (black doesn’t reformat comments or docstrings.)

If you would like, you can even have pre-commit run before you commit by
running:

pre-commit install

and now pre-commit will run before git commits. You can uninstall the
pre-commit hook at any time by running:

pre-commit uninstall

Very occasionally, you’ll want to override black formatting. To do so,
you can can add # fmt: off and # fmt: on comments.

If you want to see what changes black will make, you can use:

black --diff setup.py trio

(--diff displays a diff, versus the default mode which fixes files
in-place.)

Additionally, in some cases it is necessary to disable isort changing the
order of imports. To do so you can add # isort: split comments.
For more information, please see isort’s docs [https://pycqa.github.io/isort/docs/configuration/action_comments.html].

Release notes

We use towncrier [https://github.com/hawkowl/towncrier] to manage
our release notes [https://trio.readthedocs.io/en/latest/history.html].
Basically, every pull request that has a user
visible effect should add a short file to the newsfragments/
directory describing the change, with a name like <ISSUE
NUMBER>.<TYPE>.rst. See newsfragments/README.rst [https://github.com/python-trio/trio/blob/master/newsfragments/README.rst]
for details. This way we can keep a good list of changes as we go,
which makes the release manager happy, which means we get more
frequent releases, which means your change gets into users’ hands
faster.

Commit messages

We don’t enforce any particular format on commit messages. In your
commit messages, try to give the context to explain why a change was
made.

The target audience for release notes is users, who want to find out
about changes that might affect how they use the library, or who are
trying to figure out why something changed after they upgraded.

The target audience for commit messages is some hapless developer
(think: you in six months… or five years) who is trying to figure
out why some code looks the way it does. Including links to issues and
any other discussion that led up to the commit is strongly
recommended.

Documentation

We take pride in providing friendly and comprehensive documentation.
Documentation is stored in docs/source/*.rst and is rendered using
Sphinx [http://www.sphinx-doc.org/] with the sphinxcontrib-trio [https://sphinxcontrib-trio.readthedocs.io/en/latest/] extension.
Documentation is hosted at Read the Docs [https://readthedocs.org/], who take care of automatically
rebuilding it after every commit.

For docstrings, we use the Google docstring format [https://www.sphinx-doc.org/en/3.x/usage/extensions/example_google.html#example-google-style-python-docstrings].
If you add a new function or class, there’s no mechanism for
automatically adding that to the docs: you’ll have to at least add a
line like .. autofunction:: <your function> in the appropriate
place. In many cases it’s also nice to add some longer-form narrative
documentation around that.

We enable Sphinx’s “nitpick mode”, which turns dangling references
into an error – this helps catch typos. (This will be automatically
checked when your PR is submitted.) If you intentionally want to allow
a dangling reference, you can add it to the nitpick_ignore [http://www.sphinx-doc.org/en/stable/config.html#confval-nitpick_ignore]
whitelist in docs/source/conf.py.

To build the docs locally, use our handy docs-requirements.txt
file to install all of the required packages (possibly using a
virtualenv). After that, build the docs using make html in the
docs directory. The whole process might look something like this:

cd path/to/project/checkout/
pip install -r docs-requirements.txt
cd docs
make html

You can then browse the docs using Python’s builtin http server:
python -m http.server 8000 --bind 127.0.0.1 --directory build/html
and then opening http://127.0.0.1:8000/ in your web browser.

Joining the team

After your first PR is merged, you should receive a Github invitation
to join the python-trio organization. If you don’t, that’s not
your fault, it’s because we made a mistake on our end. Give us a
nudge on chat or send @njsmith an email and
we’ll fix it.

It’s totally up to you whether you accept or not, and if you do
accept, you’re welcome to participate as much or as little as you
want. We’re offering the invitation because we’d love for you to join
us in making Python concurrency more friendly and robust, but there’s
no pressure: life is too short to spend volunteer time on things that
you don’t find fulfilling.

At this point people tend to have questions.

How can you trust me with this kind of power? What if I mess
everything up?!?

Relax, you got this! And we’ve got your back. Remember, it’s just
software, and everything’s in version control: worst case we’ll just
roll things back and brainstorm ways to avoid the issue happening
again. We think it’s more important to welcome people and help them
grow than to worry about the occasional minor mishap.

I don’t think I really deserve this.

It’s up to you, but we wouldn’t be offering if we didn’t think
you did.

What exactly happens if I accept? Does it mean I’ll break everything
if I click the wrong button?

Concretely, if you accept the invitation, this does three things:

	It lets you manage incoming issues on all of the python-trio
projects by labelling them, closing them, etc.

	It lets you merge pull requests on all of the python-trio
projects by clicking Github’s big green “Merge” button, but only if
all their tests have passed.

	It automatically subscribes you to notifications on the
python-trio repositories (but you can unsubscribe again if you
want through the Github interface)

Note that it does not allow you to push changes directly to Github
without submitting a PR, and it doesn’t let you merge broken PRs –
this is enforced through Github’s “branch protection” feature, and it
applies to everyone from the newest contributor up to the project
founder.

Okay, that’s what I CAN do, but what SHOULD I do?

Short answer: whatever you feel comfortable with.

We do have one rule, which is the same one most F/OSS projects use:
don’t merge your own PRs. We find that having another person look at
each PR leads to better quality.

Beyond that, it all comes down to what you feel up to. If you don’t
feel like you know enough to review a complex code change, then you
don’t have to – you can just look it over and make some comments, even
if you don’t feel up to making the final merge/no-merge decision. Or
you can just stick to merging trivial doc fixes and adding tags to
issues, that’s helpful too. If after hanging around for a while you
start to feel like you have better handle on how things work and want
to start doing more, that’s excellent; if it doesn’t happen, that’s
fine too.

If at any point you’re unsure about whether doing something would be
appropriate, feel free to ask. For example, it’s totally OK if the
first time you review a PR, you want someone else to check over your
work before you hit the merge button.

The best essay I know about reviewing pull request’s is Sage Sharp’s
The gentle art of patch review [http://sage.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/].
The node.js guide [https://github.com/nodejs/node/blob/master/doc/guides/contributing/pull-requests.md#reviewing-pull-requests]
also has some good suggestions, and so does this blog post [http://verraes.net/2013/10/pre-merge-code-reviews/].

Managing issues

As issues come in, they need to be responded to, tracked, and –
hopefully! – eventually closed.

As a general rule, each open issue should represent some kind of task
that we need to do. Sometimes that task might be “figure out what to
do here”, or even “figure out whether we want to address this issue”;
sometimes it will be “answer this person’s question”. But if there’s
no followup to be done, then the issue should be closed.

Issue labels

The Trio repository in particular uses a number of labels to try and
keep track of issues. The current list is somewhat ad hoc, and may or
may not remain useful over time – if you think of a new label that
would be useful, a better name for an existing label, or think a label
has outlived its usefulness, then speak up.

	good first issue [https://github.com/python-trio/trio/labels/good%20first%20issue]:
Used to mark issues that are relatively straightforward, and could
be good places for a new contributor to start.

	todo soon [https://github.com/python-trio/trio/labels/todo%20soon]: This
marks issues where there aren’t questions left about whether or how
to do it, it’s just waiting for someone to dig in and do the work.

	missing piece [https://github.com/python-trio/trio/labels/missing%20piece]:
This generally marks significant self-contained chunks of missing
functionality. If you’re looking for a more ambitious project to
work on, this might be useful.

	potential API breaker [https://github.com/python-trio/trio/labels/potential%20API%20breaker]:
What it says. This is useful because these are issues that we’ll
want to make sure to review aggressively as Trio starts to
stabilize, and certainly before we reach 1.0.

	design discussion [https://github.com/python-trio/trio/labels/design%20discussion]:
This marks issues where there’s significant design questions to be
discussed; if you like meaty theoretical debates and discussions of
API design, then browsing this might be interesting.

	polish [https://github.com/python-trio/trio/labels/polish]:
Marks issues that it’d be nice to resolve eventually, because it’s
the Right Thing To Do, but it’s addressing a kind of edge case thing
that isn’t necessary for a minimum viable product. Sometimes
overlaps with “user happiness”.

	user happiness [https://github.com/python-trio/trio/labels/user%20happiness]:
From the name alone, this could apply to any bug (users certainly
are happier when you fix bugs!), but that’s not what we mean. This
label is used for issues involving places where users stub their
toes, or for the kinds of quality-of-life features that leave users
surprised and excited – e.g. fancy testing tools that Just Work.

Governance

Nathaniel J. Smith [https://github.com/njsmith] is the Trio BDFL [https://en.wikipedia.org/wiki/Benevolent_dictator_for_life]. If
the project grows to the point where we’d benefit from more structure,
then we’ll figure something out.

Preparing a release

Things to do for releasing:

	announce intent to release on gitter

	check for open issues / pull requests that really should be in the release

	come back when these are done

	… or ignore them and do another release next week

	check for deprecations “long enough ago” (two months or two releases, whichever is longer)

	remove affected code

	Do the actual release changeset

	bump version number

	increment as per Semantic Versioning rules

	remove +dev tag from version number

	Run towncrier

	review history change

	git rm the now outdated newfragments

	commit

	push to your personal repository

	create pull request to python-trio/trio’s “master” branch

	verify that all checks succeeded

	tag with vVERSION, push tag on python-trio/trio (not on your personal repository)

	push to PyPI:

git clean -xdf # maybe run 'git clean -xdn' first to see what it will delete
python3 setup.py sdist bdist_wheel
twine upload dist/*

	update version number in the same pull request

	add +dev tag to the end

	merge the release pull request

	make a GitHub release (go to the tag and press “Create release from tag”)

	paste in the new content in history.rst and convert it to markdown: turn the parts under section into ---, update links to just be the links, and whatever else is necessary.

	include anything else that might be pertinent, like a link to the commits between the latest and current release.

	announce on gitter

Code of Conduct

This code of conduct applies to the Trio project, and all associated
projects in the python-trio [https://github.com/python-trio]
organization.

When Something Happens

If you see a Code of Conduct violation, follow these steps:

	Let the person know that what they did is not appropriate and ask
them to stop and/or edit their message(s) or commits.

	That person should immediately stop the behavior and correct the
issue.

	If this doesn’t happen, or if you’re uncomfortable speaking up,
contact the maintainers.

	As soon as possible, a maintainer will look into the issue, and take
further action (see below), starting with
a warning, then temporary block, then long-term repo or organization
ban.

When reporting, please include any relevant details, links, screenshots,
context, or other information that may be used to better understand and
resolve the situation.

The maintainer team will prioritize the well-being and comfort of the
recipients of the violation over the comfort of the violator. See
some examples below.

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers of this project pledge to making
participation in our community a harassment-free experience for
everyone, regardless of age, body size, disability, ethnicity, gender
identity and expression, level of experience, technical preferences,
nationality, personal appearance, race, religion, or sexual identity and
orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language.

	Being respectful of differing viewpoints and experiences.

	Gracefully accepting constructive feedback.

	Focusing on what is best for the community.

	Showing empathy and kindness towards other community members.

	Encouraging and raising up your peers in the project so you can all
bask in hacks and glory.

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual
attention or advances, including when simulated online. The only
exception to sexual topics is channels/spaces specifically for topics
of sexual identity.

	Casual mention of slavery or indentured servitude and/or false
comparisons of one’s occupation or situation to slavery. Please
consider using or asking about alternate terminology when referring
to such metaphors in technology.

	Making light of/making mocking comments about trigger warnings and
content warnings.

	Trolling, insulting/derogatory comments, and personal or political
attacks.

	Public or private harassment, deliberate intimidation, or threats.

	Publishing others’ private information, such as a physical or
electronic address, without explicit permission. This includes any
sort of “outing” of any aspect of someone’s identity without their
consent.

	Publishing screenshots or quotes of private interactions in the
context of this project without all quoted users’ explicit consent.

	Publishing of private communication that doesn’t have to do with
reporting harassment.

	Any of the above even when presented as “ironic” or
“joking” [https://en.wikipedia.org/wiki/Hipster_racism].

	Any attempt to present “reverse-ism” versions of the above as
violations. Examples of reverse-isms are “reverse racism”, “reverse
sexism”, “heterophobia”, and “cisphobia”.

	Unsolicited explanations under the assumption that someone doesn’t
already know it. Ask before you teach! Don’t assume what people’s
knowledge gaps are.

	Feigning or exaggerating
surprise [https://www.recurse.com/manual#no-feigned-surprise] when
someone admits to not knowing something.

	“Well-actuallies [https://www.recurse.com/manual#no-well-actuallys]”

	Other conduct which could reasonably be considered inappropriate in a
professional or community setting.

Scope

This Code of Conduct applies both within spaces involving this project
and in other spaces involving community members. This includes the
repository, its Pull Requests and Issue tracker, its Twitter community,
private email communications in the context of the project, and any
events where members of the project are participating, as well as
adjacent communities and venues affecting the project’s members.

Depending on the violation, the maintainers may decide that violations
of this code of conduct that have happened outside of the scope of the
community may deem an individual unwelcome, and take appropriate action
to maintain the comfort and safety of its members.

Other Community Standards

As a project on GitHub, this project is additionally covered by the
GitHub Community
Guidelines [https://help.github.com/articles/github-community-guidelines/].

Enforcement of those guidelines after violations overlapping with the
above are the responsibility of the entities, and enforcement may happen
in any or all of the services/communities.

Maintainer Enforcement Process

Once the maintainers get involved, they will follow a documented series
of steps and do their best to preserve the well-being of project
members. This section covers actual concrete steps.

Contacting Maintainers

As a small and young project, we don’t yet have a Code of Conduct
enforcement team. Hopefully that will be addressed as we grow, but for
now, any issues should be addressed to Nathaniel J. Smith [https://github.com/njsmith], via email
or any other medium that you feel comfortable with. Using words like
“Trio code of conduct” in your subject will help make sure your
message is noticed quickly.

Further Enforcement

If you’ve already followed the initial enforcement steps, these are the steps maintainers will
take for further enforcement, as needed:

	Repeat the request to stop.

	If the person doubles down, they will have offending messages removed
or edited by a maintainers given an official warning. The PR or Issue
may be locked.

	If the behavior continues or is repeated later, the person will be
blocked from participating for 24 hours.

	If the behavior continues or is repeated after the temporary block, a
long-term (6-12mo) ban will be used.

	If after this the behavior still continues, a permanent ban may be
enforced.

On top of this, maintainers may remove any offending messages, images,
contributions, etc, as they deem necessary.

Maintainers reserve full rights to skip any of these steps, at their
discretion, if the violation is considered to be a serious and/or
immediate threat to the health and well-being of members of the
community. These include any threats, serious physical or verbal
attacks, and other such behavior that would be completely unacceptable
in any social setting that puts our members at risk.

Members expelled from events or venues with any sort of paid attendance
will not be refunded.

Who Watches the Watchers?

Maintainers and other leaders who do not follow or enforce the Code of
Conduct in good faith may face temporary or permanent repercussions as
determined by other members of the project’s leadership. These may
include anything from removal from the maintainer team to a permanent
ban from the community.

Additionally, as a project hosted on GitHub, their Code of
Conduct may be applied against maintainers of this project, externally of this project’s
procedures.

Enforcement Examples

The Best Case

The vast majority of situations work out like this. This interaction is
common, and generally positive.

Alex: “Yeah I used X and it was really crazy!”

Patt (not a maintainer): “Hey, could you not use that word? What
about ‘ridiculous’ instead?”

Alex: “oh sorry, sure.” -> edits old comment to say “it was really
confusing!”

The Maintainer Case

Sometimes, though, you need to get maintainers involved. Maintainers
will do their best to resolve conflicts, but people who were harmed by
something will take priority.

Patt: “Honestly, sometimes I just really hate using $library and
anyone who uses it probably sucks at their job.”

Alex: “Whoa there, could you dial it back a bit? There’s a CoC thing
about attacking folks’ tech use like that.”

Patt: “I’m not attacking anyone, what’s your problem?”

Alex: “@maintainers hey uh. Can someone look at this issue? Patt is
getting a bit aggro. I tried to nudge them about it, but nope.”

KeeperOfCommitBits: (on issue) “Hey Patt, maintainer here. Could you
tone it down? This sort of attack is really not okay in this space.”

Patt: “Leave me alone I haven’t said anything bad wtf is wrong with
you.”

KeeperOfCommitBits: (deletes user’s comment), “@patt I mean it.
Please refer to the CoC over at (URL to this CoC) if you have
questions, but you can consider this an actual warning. I’d
appreciate it if you reworded your messages in this thread, since
they made folks there uncomfortable. Let’s try and be kind, yeah?”

Patt: “@keeperofbits Okay sorry. I’m just frustrated and I’m kinda
burnt out and I guess I got carried away. I’ll DM Alex a note
apologizing and edit my messages. Sorry for the trouble.”

KeeperOfCommitBits: “@patt Thanks for that. I hear you on the
stress. Burnout sucks :/. Have a good one!”

The Nope Case

PepeTheFrog🐸: “Hi, I am a literal actual nazi and I think white
supremacists are quite fashionable.”

Patt: “NOOOOPE. OH NOPE NOPE.”

Alex: “JFC NO. NOPE. @keeperofbits NOPE NOPE LOOK HERE”

KeeperOfCommitBits: “👀 Nope. NOPE NOPE NOPE. 🔥”

PepeTheFrog🐸 has been banned from all organization or user
repositories belonging to KeeperOfCommitBits.

Attribution

This Code of Conduct was generated using WeAllJS Code of Conduct
Generator [https://npm.im/weallbehave], which is based on the
WeAllJS Code of Conduct [https://wealljs.org/code-of-conduct], which
is itself based on Contributor
Covenant [http://contributor-covenant.org], version 1.4, available at
http://contributor-covenant.org/version/1/4, and the LGBTQ in Technology
Slack Code of Conduct [http://lgbtq.technology/coc.html].

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 trio	

 	
 	
 trio.from_thread	

 	
 	
 trio.lowlevel	

 	
 	
 trio.socket	

 	
 	
 trio.testing	

 	
 	
 trio.to_thread	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	Abort (class in trio.lowlevel)

 	Abort.FAILED (in module trio.lowlevel)

 	Abort.SUCCEEDED (in module trio.lowlevel)

 	accept() (trio.abc.Listener method)

 	(trio.SocketListener method)

 	(trio.SSLListener method)

 	aclose() (trio.abc.AsyncResource method)

 	(trio.DTLSChannel method)

 	(trio.SocketListener method)

 	(trio.SocketStream method)

 	(trio.SSLListener method)

 	(trio.SSLStream method)

 	(trio.StapledStream method)

 	(trio.testing.MemoryReceiveStream method)

 	(trio.testing.MemorySendStream method)

 	aclose_forcefully() (in module trio)

 	acquire() (trio.CapacityLimiter method)

 	(trio.Condition method)

 	(trio.Lock method)

 	(trio.Semaphore method)

 	
 	acquire_nowait() (trio.CapacityLimiter method)

 	(trio.Condition method)

 	(trio.Lock method)

 	(trio.Semaphore method)

 	acquire_on_behalf_of() (trio.CapacityLimiter method)

 	acquire_on_behalf_of_nowait() (trio.CapacityLimiter method)

 	add_instrument() (in module trio.lowlevel)

 	after_io_wait() (trio.abc.Instrument method)

 	after_run() (trio.abc.Instrument method)

 	after_task_step() (trio.abc.Instrument method)

 	args (trio.Process attribute)

 	as_posix() (trio.Path method)

 	as_uri() (trio.Path method)

 	assert_checkpoints() (in module trio.testing)

 	assert_no_checkpoints() (in module trio.testing)

 	Asynchronous file interface (interface in trio)

 	asynchronous file object

 	AsyncResource (class in trio.abc)

 	autojump_threshold (trio.testing.MockClock attribute)

 	available_tokens (trio.CapacityLimiter property)

B

 	
 	before_io_wait() (trio.abc.Instrument method)

 	before_run() (trio.abc.Instrument method)

 	before_task_step() (trio.abc.Instrument method)

 	
 	borrowed_tokens (trio.CapacityLimiter property)

 	BrokenResourceError

 	BusyResourceError

C

 	
 	cancel() (trio.CancelScope method)

 	cancel_called (trio.CancelScope attribute)

 	cancel_scope (trio.Nursery attribute)

 	cancel_shielded_checkpoint() (in module trio.lowlevel)

 	Cancelled

 	cancelled_caught (trio.CancelScope attribute)

 	CancelScope (class in trio)

 	CapacityLimiter (class in trio)

 	CapacityLimiterStatistics (class in trio)

 	Channel (class in trio.abc)

 	check_cancelled() (in module trio.from_thread)

 	check_half_closeable_stream() (in module trio.testing)

 	check_one_way_stream() (in module trio.testing)

 	check_two_way_stream() (in module trio.testing)

 	checkpoint() (in module trio.lowlevel)

 	checkpoint_if_cancelled() (in module trio.lowlevel)

 	child_nurseries (trio.lowlevel.Task attribute)

 	child_tasks (trio.Nursery property)

 	chmod() (trio.Path method)

 	Clock (class in trio.abc)

 	clone() (trio.MemoryReceiveChannel method)

 	(trio.MemorySendChannel method)

 	close() (trio.DTLSChannel method)

 	(trio.DTLSEndpoint method)

 	(trio.MemoryReceiveChannel method)

 	(trio.MemorySendChannel method)

 	(trio.testing.MemoryReceiveStream method)

 	(trio.testing.MemorySendStream method)

 	
 	close_hook (trio.testing.MemoryReceiveStream attribute)

 	(trio.testing.MemorySendStream attribute)

 	ClosedResourceError

 	Condition (class in trio)

 	ConditionStatistics (class in trio)

 	connect() (trio.DTLSEndpoint method)

 	(trio.socket.SocketType method)

 	context (trio.lowlevel.Task attribute)

 	coro (trio.lowlevel.Task attribute)

 	current_clock() (in module trio.lowlevel)

 	current_default_thread_limiter() (in module trio.to_thread)

 	current_effective_deadline() (in module trio)

 	current_iocp() (in module trio.lowlevel)

 	current_kqueue() (in module trio.lowlevel)

 	current_root_task() (in module trio.lowlevel)

 	current_statistics() (in module trio.lowlevel)

 	current_task() (in module trio.lowlevel)

 	current_time() (in module trio)

 	(trio.abc.Clock method)

 	current_trio_token() (in module trio.lowlevel)

 	currently_ki_protected() (in module trio.lowlevel)

 	custom_sleep_data (trio.lowlevel.Task attribute)

 	cwd() (trio.Path class method)

D

 	
 	deadline (trio.CancelScope attribute)

 	deadline_to_sleep_time() (trio.abc.Clock method)

 	did_shutdown_SHUT_WR (trio.socket.SocketType attribute)

 	disable_ki_protection() (in module trio.lowlevel)

 	
 	do_handshake() (trio.DTLSChannel method)

 	(trio.SSLStream method)

 	DTLSChannel (class in trio)

 	DTLSChannelStatistics (class in trio)

 	DTLSEndpoint (class in trio)

E

 	
 	enable_ki_protection() (in module trio.lowlevel)

 	EndOfChannel

 	endpoint (trio.DTLSChannel attribute)

 	Event (class in trio)

 	
 	EventStatistics (class in trio)

 	eventual_parent_nursery (trio.lowlevel.Task attribute)

 	exists() (trio.Path method)

 	expanduser() (trio.Path method)

F

 	
 	fail_after() (in module trio)

 	fail_at() (in module trio)

 	FdStream (class in trio.lowlevel)

 	
 	fileno() (trio._subprocess.HasFileno method)

 	from_stdlib_socket() (in module trio.socket)

 	fromfd() (in module trio.socket)

 	fromshare() (in module trio.socket)

G

 	
 	get_cleartext_mtu() (trio.DTLSChannel method)

 	get_data() (trio.testing.MemorySendStream method)

 	get_data_nowait() (trio.testing.MemorySendStream method)

 	getaddrinfo() (in module trio.socket)

 	(trio.abc.HostnameResolver method)

 	
 	getnameinfo() (in module trio.socket)

 	(trio.abc.HostnameResolver method)

 	getprotobyname() (in module trio.socket)

 	getsockopt() (trio.SocketStream method)

 	glob() (trio.Path method)

 	group() (trio.Path method)

H

 	
 	HalfCloseableStream (class in trio.abc)

 	hardlink_to() (trio.Path method)

 	
 	HasFileno (class in trio._subprocess)

 	home() (trio.Path class method)

 	HostnameResolver (class in trio.abc)

I

 	
 	incoming_packets_buffer (trio.DTLSEndpoint attribute)

 	Instrument (class in trio.abc)

 	is_absolute() (trio.Path method)

 	is_block_device() (trio.Path method)

 	is_char_device() (trio.Path method)

 	is_dir() (trio.Path method)

 	is_fifo() (trio.Path method)

 	is_file() (trio.Path method)

 	
 	is_mount() (trio.Path method)

 	is_readable() (trio.socket.SocketType method)

 	is_relative_to() (trio.Path method)

 	is_reserved() (trio.Path method)

 	is_set() (trio.Event method)

 	is_socket() (trio.Path method)

 	is_symlink() (trio.Path method)

 	iter_await_frames() (trio.lowlevel.Task method)

 	iterdir() (trio.Path method)

J

 	
 	joinpath() (trio.Path method)

 	
 	jump() (trio.testing.MockClock method)

K

 	
 	kill() (trio.Process method)

L

 	
 	lchmod() (trio.Path method)

 	link_to() (trio.Path method)

 	Listener (class in trio.abc)

 	Lock (class in trio)

 	locked() (trio.Condition method)

 	(trio.Lock method)

 	
 	LockStatistics (class in trio)

 	lockstep_stream_one_way_pair() (in module trio.testing)

 	lockstep_stream_pair() (in module trio.testing)

 	lstat() (trio.Path method)

M

 	
 	match() (trio.Path method)

 	max_value (trio.Semaphore property)

 	memory_stream_one_way_pair() (in module trio.testing)

 	memory_stream_pair() (in module trio.testing)

 	memory_stream_pump() (in module trio.testing)

 	MemoryReceiveChannel (class in trio)

 	MemoryReceiveStream (class in trio.testing)

 	MemorySendChannel (class in trio)

 	MemorySendStream (class in trio.testing)

 	mkdir() (trio.Path method)

 	MockClock (class in trio.testing)

 	
 	
 module

 	trio

 	trio.from_thread

 	trio.lowlevel

 	trio.socket

 	trio.testing

 	trio.to_thread

 	monitor_completion_key() (in module trio.lowlevel)

 	monitor_kevent() (in module trio.lowlevel)

 	move_on_after() (in module trio)

 	move_on_at() (in module trio)

N

 	
 	name (trio.lowlevel.Task attribute)

 	NeedHandshakeError

 	notify() (trio.Condition method)

 	
 	notify_all() (trio.Condition method)

 	notify_closing() (in module trio.lowlevel)

 	Nursery (class in trio)

O

 	
 	open() (trio.Path method)

 	open_file() (in module trio)

 	open_memory_channel() (in module trio)

 	open_nursery() (in module trio)

 	open_process() (in module trio.lowlevel)

 	open_signal_receiver() (in module trio)

 	
 	open_ssl_over_tcp_listeners() (in module trio)

 	open_ssl_over_tcp_stream() (in module trio)

 	open_stream_to_socket_listener() (in module trio.testing)

 	open_tcp_listeners() (in module trio)

 	open_tcp_stream() (in module trio)

 	open_unix_socket() (in module trio)

 	owner() (trio.Path method)

P

 	
 	parent_nursery (trio.lowlevel.Task attribute)

 	parent_task (trio.Nursery property)

 	park() (trio.lowlevel.ParkingLot method)

 	ParkingLot (class in trio.lowlevel)

 	ParkingLotStatistics (class in trio.lowlevel)

 	Path (class in trio)

 	peer_address (trio.DTLSChannel attribute)

 	permanently_detach_coroutine_object() (in module trio.lowlevel)

 	
 	pid (trio.Process attribute)

 	poll() (trio.Process method)

 	Process (class in trio)

 	put_data() (trio.testing.MemoryReceiveStream method)

 	put_eof() (trio.testing.MemoryReceiveStream method)

 	
 Python Enhancement Proposals

 	PEP 525

 	PEP 654, [1]

R

 	
 	rate (trio.testing.MockClock attribute)

 	read_bytes() (trio.Path method)

 	read_text() (trio.Path method)

 	readlink() (trio.Path method)

 	reattach_detached_coroutine_object() (in module trio.lowlevel)

 	receive() (trio.abc.ReceiveChannel method)

 	(trio.DTLSChannel method)

 	(trio.MemoryReceiveChannel method)

 	receive_nowait() (trio.MemoryReceiveChannel method)

 	receive_some() (trio.abc.ReceiveStream method)

 	(trio.SocketStream method)

 	(trio.SSLStream method)

 	(trio.StapledStream method)

 	(trio.testing.MemoryReceiveStream method)

 	receive_some_hook (trio.testing.MemoryReceiveStream attribute)

 	receive_stream (trio.StapledStream attribute)

 	ReceiveChannel (class in trio.abc)

 	ReceiveStream (class in trio.abc)

 	register_with_iocp() (in module trio.lowlevel)

 	relative_to() (trio.Path method)

 	release() (trio.CapacityLimiter method)

 	(trio.Condition method)

 	(trio.Lock method)

 	(trio.Semaphore method)

 	
 	release_on_behalf_of() (trio.CapacityLimiter method)

 	remove_instrument() (in module trio.lowlevel)

 	rename() (trio.Path method)

 	repark() (trio.lowlevel.ParkingLot method)

 	repark_all() (trio.lowlevel.ParkingLot method)

 	replace() (trio.Path method)

 	reschedule() (in module trio.lowlevel)

 	resolve() (trio.Path method)

 	returncode (trio.Process attribute)

 	rglob() (trio.Path method)

 	rmdir() (trio.Path method)

 	run() (in module trio)

 	(in module trio.from_thread)

 	run_process() (in module trio)

 	run_sync() (in module trio.from_thread)

 	(in module trio.to_thread)

 	run_sync_soon() (trio.lowlevel.TrioToken method)

 	RunFinishedError

 	RunStatistics (class in trio.lowlevel)

 	RunVar (class in trio.lowlevel)

S

 	
 	samefile() (trio.Path method)

 	Semaphore (class in trio)

 	send() (trio.abc.SendChannel method)

 	(trio.DTLSChannel method)

 	(trio.MemorySendChannel method)

 	send_all() (trio.abc.SendStream method)

 	(trio.SocketStream method)

 	(trio.SSLStream method)

 	(trio.StapledStream method)

 	(trio.testing.MemorySendStream method)

 	send_all_hook (trio.testing.MemorySendStream attribute)

 	send_eof() (trio.abc.HalfCloseableStream method)

 	(trio.SocketStream method)

 	(trio.StapledStream method)

 	send_nowait() (trio.MemorySendChannel method)

 	send_signal() (trio.Process method)

 	send_stream (trio.StapledStream attribute)

 	SendChannel (class in trio.abc)

 	sendfile() (trio.socket.SocketType method)

 	SendStream (class in trio.abc)

 	Sequencer (class in trio.testing)

 	serve() (trio.DTLSEndpoint method)

 	serve_listeners() (in module trio)

 	serve_ssl_over_tcp() (in module trio)

 	serve_tcp() (in module trio)

 	set() (trio.Event method)

 	set_ciphertext_mtu() (trio.DTLSChannel method)

 	set_custom_hostname_resolver() (in module trio.socket)

 	set_custom_socket_factory() (in module trio.socket)

 	setsockopt() (trio.SocketStream method)

 	shield (trio.CancelScope attribute)

 	sleep() (in module trio)

 	sleep_forever() (in module trio)

 	sleep_until() (in module trio)

 	
 	socket (trio.DTLSEndpoint attribute)

 	(trio.SocketListener attribute)

 	(trio.SocketStream attribute)

 	socket() (in module trio.socket)

 	(trio.abc.SocketFactory method)

 	SocketFactory (class in trio.abc)

 	SocketListener (class in trio)

 	socketpair() (in module trio.socket)

 	SocketStream (class in trio)

 	SocketType (class in trio.socket)

 	spawn_system_task() (in module trio.lowlevel)

 	SSLListener (class in trio)

 	SSLStream (class in trio)

 	StapledStream (class in trio)

 	start() (trio.Nursery method)

 	start_clock() (trio.abc.Clock method)

 	start_guest_run() (in module trio.lowlevel)

 	start_soon() (trio.Nursery method)

 	start_thread_soon() (in module trio.lowlevel)

 	started() (trio.TaskStatus method)

 	stat() (trio.Path method)

 	statistics() (trio.CapacityLimiter method)

 	(trio.Condition method)

 	(trio.DTLSChannel method)

 	(trio.Event method)

 	(trio.Lock method)

 	(trio.lowlevel.ParkingLot method)

 	(trio.Semaphore method)

 	stderr (trio.Process attribute)

 	stdin (trio.Process attribute)

 	stdio (trio.Process attribute)

 	stdout (trio.Process attribute)

 	Stream (class in trio.abc)

 	StrictFIFOLock (class in trio)

 	symlink_to() (trio.Path method)

T

 	
 	Task (class in trio.lowlevel)

 	task_exited() (trio.abc.Instrument method)

 	task_scheduled() (trio.abc.Instrument method)

 	task_spawned() (trio.abc.Instrument method)

 	TASK_STATUS_IGNORED (in module trio)

 	TaskStatus (class in trio)

 	temporarily_detach_coroutine_object() (in module trio.lowlevel)

 	terminate() (trio.Process method)

 	TooSlowError

 	total_tokens (trio.CapacityLimiter property)

 	touch() (trio.Path method)

 	transport_listener (trio.SSLListener attribute)

 	transport_stream (trio.SSLStream attribute)

 	
 trio

 	module

 	
 	
 trio.from_thread

 	module

 	
 trio.lowlevel

 	module

 	
 trio.socket

 	module

 	
 trio.testing

 	module

 	
 trio.to_thread

 	module

 	trio_test() (in module trio.testing)

 	TrioDeprecationWarning

 	TrioInternalError

 	TrioToken (class in trio.lowlevel)

U

 	
 	unlink() (trio.Path method)

 	unpark() (trio.lowlevel.ParkingLot method)

 	
 	unpark_all() (trio.lowlevel.ParkingLot method)

 	unwrap() (trio.SSLStream method)

V

 	
 	value (trio.Semaphore property)

W

 	
 	wait() (trio.Condition method)

 	(trio.Event method)

 	(trio.Process method)

 	wait_all_tasks_blocked() (in module trio.testing)

 	wait_kevent() (in module trio.lowlevel)

 	wait_overlapped() (in module trio.lowlevel)

 	wait_readable() (in module trio.lowlevel)

 	wait_send_all_might_not_block() (trio.abc.SendStream method)

 	(trio.SocketStream method)

 	(trio.SSLStream method)

 	(trio.StapledStream method)

 	(trio.testing.MemorySendStream method)

 	
 	wait_send_all_might_not_block_hook (trio.testing.MemorySendStream attribute)

 	wait_task_rescheduled() (in module trio.lowlevel)

 	wait_writable() (in module trio.lowlevel)

 	WaitForSingleObject() (in module trio.lowlevel)

 	with_name() (trio.Path method)

 	with_stem() (trio.Path method)

 	with_suffix() (trio.Path method)

 	WouldBlock

 	wrap_file() (in module trio)

 	wrapped (trio.Asynchronous file interface attribute)

 	write_bytes() (trio.Path method)

 	write_text() (trio.Path method)

Glossary

	asynchronous file object
	This is an object with an API identical to a file object [https://docs.python.org/3/glossary.html#term-file-object], with
the exception that all methods that do I/O are async functions.

The main ways to create an asynchronous file object are by using the
trio.open_file() function or the trio.Path.open()
method. See Asynchronous filesystem I/O for more details.

 _static/favicon-32.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Trio: a friendly Python library for async concurrency and I/O

 		
 Tutorial

 		
 Before you begin

 		
 If you get lost or confused…

 		
 Async functions

 		
 Warning: don’t forget that await!

 		
 Okay, let’s see something cool already

 		
 Task switching illustrated

 		
 A kinder, gentler GIL

 		
 Networking with Trio

 		
 An echo client

 		
 An echo server

 		
 Try it out

 		
 Flow control in our echo client and server

 		
 When things go wrong: timeouts, cancellation and exceptions in concurrent tasks

 		
 Awesome Trio Libraries

 		
 Getting Started

 		
 Web and HTML

 		
 Database

 		
 IOT

 		
 Building Command Line Apps

 		
 Building GUI Apps

 		
 Multi-Core/Multiprocessing

 		
 Stream Processing

 		
 RPC

 		
 Testing

 		
 Tools and Utilities

 		
 Trio/Asyncio Interoperability

 		
 Trio’s core functionality

 		
 Entering Trio

 		
 run()

 		
 General principles

 		
 Checkpoints

 		
 Thread safety

 		
 Time and clocks

 		
 current_time()

 		
 sleep()

 		
 sleep_until()

 		
 sleep_forever()

 		
 Clock

 		
 Cancellation and timeouts

 		
 A simple timeout example

 		
 Handling cancellation

 		
 Cancellation semantics

 		
 Cancellation and primitive operations

 		
 Cancellation API details

 		
 Tasks let you do multiple things at once

 		
 Nurseries and spawning

 		
 Child tasks and cancellation

 		
 Errors in multiple child tasks

 		
 Spawning tasks without becoming a parent

 		
 Custom supervisors

 		
 Task-related API details

 		
 Task-local storage

 		
 Synchronizing and communicating between tasks

 		
 Blocking and non-blocking methods

 		
 Fairness

 		
 Broadcasting an event with Event

 		
 Using channels to pass values between tasks

 		
 Lower-level synchronization primitives

 		
 Notes on async generators

 		
 Finalization

 		
 Cancel scopes and nurseries

 		
 Threads (if you must)

 		
 Trio’s philosophy about managing worker threads

 		
 Putting blocking I/O into worker threads

 		
 Getting back into the Trio thread from another thread

 		
 Threads and task-local storage

 		
 Exceptions and warnings

 		
 Cancelled

 		
 TooSlowError

 		
 WouldBlock

 		
 EndOfChannel

 		
 BusyResourceError

 		
 ClosedResourceError

 		
 BrokenResourceError

 		
 RunFinishedError

 		
 TrioInternalError

 		
 TrioDeprecationWarning

 		
 I/O in Trio

 		
 The abstract Stream API

 		
 Abstract base classes

 		
 Generic stream tools

 		
 Sockets and networking

 		
 SSL / TLS support

 		
 Datagram TLS support

 		
 Low-level networking with trio.socket

 		
 Top-level exports

 		
 Socket objects

 		
 Asynchronous filesystem I/O

 		
 Background: Why is async file I/O useful? The answer may surprise you

 		
 API overview

 		
 Asynchronous path objects

 		
 Asynchronous file objects

 		
 Spawning subprocesses

 		
 run_process()

 		
 HasFileno

 		
 Process

 		
 Options for starting subprocesses

 		
 Quoting: more than you wanted to know

 		
 Signals

 		
 open_signal_receiver()

 		
 Testing made easier with trio.testing

 		
 Test harness integration

 		
 trio_test

 		
 Time and timeouts

 		
 MockClock

 		
 Inter-task ordering

 		
 Sequencer

 		
 wait_all_tasks_blocked()

 		
 Streams

 		
 Connecting to an in-process socket server

 		
 Virtual, controllable streams

 		
 API details

 		
 Testing custom stream implementations

 		
 Virtual networking for testing

 		
 set_custom_hostname_resolver()

 		
 HostnameResolver

 		
 set_custom_socket_factory()

 		
 SocketFactory

 		
 Testing checkpoints

 		
 assert_checkpoints()

 		
 assert_no_checkpoints()

 		
 Introspecting and extending Trio with trio.lowlevel

 		
 Debugging and instrumentation

 		
 Global statistics

 		
 The current clock

 		
 Instrument API

 		
 Low-level process spawning

 		
 open_process()

 		
 Low-level I/O primitives

 		
 Universally available API

 		
 Unix-specific API

 		
 Kqueue-specific API

 		
 Windows-specific API

 		
 Global state: system tasks and run-local variables

 		
 RunVar

 		
 spawn_system_task()

 		
 Trio tokens

 		
 TrioToken

 		
 current_trio_token()

 		
 Spawning threads

 		
 start_thread_soon()

 		
 Safer KeyboardInterrupt handling

 		
 disable_ki_protection()

 		
 enable_ki_protection()

 		
 currently_ki_protected()

 		
 Sleeping and waking

 		
 Wait queue abstraction

 		
 Low-level checkpoint functions

 		
 Low-level blocking

 		
 Task API

 		
 current_root_task()

 		
 current_task()

 		
 Task

 		
 Using “guest mode” to run Trio on top of other event loops

 		
 What is “guest mode”?

 		
 Really? How is that possible?

 		
 Implementing guest mode for your favorite event loop

 		
 Limitations

 		
 Reference

 		
 Handing off live coroutine objects between coroutine runners

 		
 permanently_detach_coroutine_object()

 		
 temporarily_detach_coroutine_object()

 		
 reattach_detached_coroutine_object()

 		
 Design and internals

 		
 High-level design principles

 		
 User-level API principles

 		
 Basic principles

 		
 Cancel points and schedule points

 		
 Exceptions always propagate

 		
 Introspection, debugging, testing

 		
 Specific style guidelines

 		
 A brief tour of Trio’s internals

 		
 Inside trio._core

 		
 Release history

 		
 Trio 0.23.0 (2023-11-03)

 		
 Headline features

 		
 Features

 		
 Bugfixes

 		
 Deprecations and removals

 		
 Removals without deprecations

 		
 Miscellaneous internal changes

 		
 Trio 0.22.2 (2023-07-13)

 		
 Bugfixes

 		
 Trio 0.22.1 (2023-07-02)

 		
 Breaking changes

 		
 Features

 		
 Bugfixes

 		
 Improved documentation

 		
 Trio 0.22.0 (2022-09-28)

 		
 Headline features

 		
 Features

 		
 Trio 0.21.0 (2022-06-07)

 		
 Features

 		
 Deprecations and Removals

 		
 Trio 0.20.0 (2022-02-21)

 		
 Features

 		
 Bugfixes

 		
 Trio 0.19.0 (2021-06-15)

 		
 Features

 		
 Bugfixes

 		
 Trio 0.18.0 (2021-01-11)

 		
 Features

 		
 Bugfixes

 		
 Deprecations and removals

 		
 Trio 0.17.0 (2020-09-15)

 		
 Headline features

 		
 Features

 		
 Bugfixes

 		
 Deprecations and removals

 		
 Miscellaneous internal changes

 		
 Trio 0.16.0 (2020-06-10)

 		
 Headline features

 		
 Features

 		
 Bugfixes

 		
 Deprecations and removals

 		
 Miscellaneous internal changes

 		
 Trio 0.15.1 (2020-05-22)

 		
 Bugfixes

 		
 Trio 0.15.0 (2020-05-19)

 		
 Features

 		
 Bugfixes

 		
 Deprecations and Removals

 		
 Trio 0.14.0 (2020-04-27)

 		
 Features

 		
 Bugfixes

 		
 Deprecations and Removals

 		
 Trio 0.13.0 (2019-11-02)

 		
 Features

 		
 Bugfixes

 		
 Trio 0.12.1 (2019-08-01)

 		
 Bugfixes

 		
 Trio 0.12.0 (2019-07-31)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Deprecations and Removals

 		
 Miscellaneous internal changes

 		
 Trio 0.11.0 (2019-02-09)

 		
 Features

 		
 Bugfixes

 		
 Deprecations and Removals

 		
 Miscellaneous internal changes

 		
 Trio 0.10.0 (2019-01-07)

 		
 Features

 		
 Bugfixes

 		
 Deprecations and Removals

 		
 Miscellaneous internal changes

 		
 Trio 0.9.0 (2018-10-12)

 		
 Features

 		
 Deprecations and Removals

 		
 Trio 0.8.0 (2018-10-01)

 		
 Features

 		
 Deprecations and Removals

 		
 Trio 0.7.0 (2018-09-03)

 		
 Features

 		
 Bugfixes

 		
 Deprecations and Removals

 		
 Trio 0.6.0 (2018-08-13)

 		
 Features

 		
 Bugfixes

 		
 Trio 0.5.0 (2018-07-20)

 		
 Features

 		
 Deprecations and Removals

 		
 Trio 0.4.0 (2018-04-10)

 		
 Features

 		
 Bugfixes

 		
 Deprecations and Removals

 		
 Miscellaneous internal changes

 		
 Trio 0.3.0 (2017-12-28)

 		
 Features

 		
 Bugfixes

 		
 Deprecations and Removals

 		
 Trio 0.2.0 (2017-12-06)

 		
 Highlights

 		
 Breaking changes and deprecations

 		
 Other changes

 		
 Trio 0.1.0 (2017-03-10)

 		
 Contributing to Trio and related projects

 		
 Getting started

 		
 Providing support

 		
 Preparing pull requests

 		
 What to put in a PR

 		
 Tests

 		
 Code formatting

 		
 Release notes

 		
 Commit messages

 		
 Documentation

 		
 Joining the team

 		
 Managing issues

 		
 Issue labels

 		
 Governance

 		
 Preparing a release

 		
 Code of Conduct

 		
 When Something Happens

 		
 Our Pledge

 		
 Our Standards

 		
 Scope

 		
 Other Community Standards

 		
 Maintainer Enforcement Process

 		
 Contacting Maintainers

 		
 Further Enforcement

 		
 Who Watches the Watchers?

 		
 Enforcement Examples

 		
 The Best Case

 		
 The Maintainer Case

 		
 The Nope Case

 		
 Attribution

_static/plus.png

_static/minus.png

